ZKX's LAB

匀变速直线运动6比例式推导过程

2020-07-17知识21

如何推导匀变速直线运动的平均速度公式 推导匀变速直线运动的平均速度公式为一、匀变速直线运动:匀变速直线运动,速度均匀变化的直线运动,即加速度不变的直线运动。其速度时间图像是一条倾斜的直线,表示在任意相等的时间内速度的变化量都相同,即速度(v)的变化量与对应时间(t)的变化量之比保持不变(加速度不变),这样的运动是变速运动中最简单的运动形式,叫做匀变速直线运动。二、推导过程:由于匀变速直线运动的速度是均匀变化的,故平均速度=(初速度+末速度)/2=中间时刻的瞬时速度而匀变速直线运动的位移=平均速度×时间,故利用位移公式和平均速度公式得平均速度为高一物理匀变速直线运动的几个比例关系是如何推导出来的?如何应用和理解? 比例关系?想必是1:3:5:7:…:(2n-1)那个了吧.给你看一下这个:匀变速直线运动的一个重要结论:由静止开始的匀加速运动(由静止开始,当然不能匀减速了!连续相同时间段的位移比为:1:3:5:7:…:(2n-1)第一个两秒:第二个两秒:第三个两秒:第四个两秒=1:3:5:7那也就是说第四个两秒内位移是3×7=21米.那么这个结论是怎么来的呢?由公式:s=1/2at^2来的.“V0t”哪去了?初速度为0嘛,V0t就是0了,这里就不用写了.只要是连续的、相同长度时间段,都有上述比值关系.证明:设连续的这些时间段,时间长度都是t,那么第一个t时间的位移:s1=1/2at^2前两个t时间的位移:s2=1/2a(2t)^2=4s1前三个t时间的位移:s3=1/2a(3t)^2=9s1前四个t时间…16s1前n-1个t时间的位移:(n-1)^2s1前n个t时间的位移:n^2s1也就是都是平方增长.那么,第二个t时间的位移是多少?当然是,前两个t时间的位移,减去第一个t时间的位移了!也就是(4-1)s1=3s1第三个t时间的位移是多少?当然是,前三个减去前两个了!也就是5s1第n个t时间的位移是多少?当然是,前n个,减去前n-1个了,也就是n^2s1-(n-1)^2s1=(2n-1)s1了所以,初速度为0的匀加速直线运动,连续、等长的时间段时通过的位移比,就是1:3:5:7:…:(2n-1)希望初速度为零的匀加速直线运动的6个比例关系的推论 (1)做初速度为零的匀加速直线运动的物体,在1s末、2s末、3s末、…ns末的瞬时速度之比为1:2:3:…:nv(n)=antv(n-1)=a(n-1)tv(n-1):v(n)=(n-1):n(n>=2)所以:v(1):v(2):v(3).=1:2:3.(2)做初速度为零的匀加速直线运动的物体,在1s末、2s末、3s末、…ns末的位移之比为1:4:9:…:s(n)=1/2a(nt)^2s(n-1)=1/2a((n-1)t)^2s(n-1):s(n)=(n-1)^2:n^2所以:s(1):s(2):s(3).=1^2:2^2:3^2.(3)做初速度为零的匀加速直线运动的物体,在第1s内、第2s内、第3s内、…第ns内的位移之比为1:3:5:…(2n-1)s(n+1)=1/2a((n+1)t)^2s(n)=1/2a(nt)^2s(n-1)=1/2a((n-1)t)^2s(n+1)-s(n)=1/2a((n+1)t)^2-1/2a(nt)^2s(n)-s(n-1)=1/2a(nt)^2-1/2a((n-1)t)^2s(n+1)-s(n):s(n)-s(n-1)=(n+1)^2-(n)^2:(n)^2-(n-1)^2所以是:1:2:3.(4)做初速度为零的匀加速直线运动的物体,从静止开始通过连续相等的位移所用时间之比为…同样的方法重要的是明白是什么意思匀变速直线运动中间位置的瞬时速度的公式是什么?怎么推导? 根号下{(V0平方+Vt平方)/2}.推导:V中平方-V0平方=2as;Vt平方-V中平方=2as,两式相减就可以得到了匀变速直线运动的速度与位移的基本公式是如何推导出来的 ^在由v-t图像知道,平均速度点为线段中点,平均速度V'=(v。v)/2,其中v=v。at所以s=t*(2v。at)/2=v。t+(at^2)/23微积分,dv=adtds=vdts=v。t+(at^2)/2沿着一条直线,且加速度方向与速度方向平行的运动,叫做匀变速直线运动。如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动。路程公式:s(t)=1/2·at^2+v(0)t=[v(t)2-v(0)2]/(2a)={[v(t)+v(0)]/2}×t速度公式:v(t)=v(0)+at其中a为加速度,v(0)为初速度,v(t)为t秒时的速度 s(t)为t秒时的位移速度公式:v=v0+at位移公式:x=v0t+1/2at2;位移-速度公式:2ax=v2-v02;求匀变速直线运动的速度与位移关系公式的详细推导过程 第一式;v=v0+at 最好是从a的定2113义去理解—单5261位时间内速度的变化4102量!物体原来的速度是:V0,匀变速运动的加1653速度为a,也就是每秒速度的变化量,那么t秒后速度的变化量是:at。原来速度加上变化了的速度就是后来的速度,所以:v=v0+at第二式:x=v0t+(1/2)at^2 教材上是通过图形法(速度—时间图像中面积)来推导的!我就不再重复了。现从理论上分析一下:位移=平均速度*时间初始速度为v0t秒时的速度v=v0+at所以平均速度v'=(v0+v)/2所以位移=平均速度*时间x=(v0+v)/2*t=(v0+v0+at)/2*tx=v0t+(1/2)at^2扩展资料:在匀变速直线运动中,如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动;如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。若速度方向与加速度方向相同(即同号),则是加速运动;若速度方向与加速度方向相反(即异号),则是减速运动。物体具有竖直向上的初速度,加速度始终为重力加速度g的匀变速运动,可分为上抛时的匀减速运动和下落时的自由落体运动的两过程。它是初速度为(不等于0)的匀减速直线运动与自由落体运动的合运动,运动过程中上升和下落两过程所用的时间相等,只受重力作用且受力方向与初推导几个物理匀变速直线运动的公式 匀变速直线运动的几个重要推论,我大概告诉你:(均在匀变速运动情境下)S2-S1=S4-S3=.=Sn-Sn-1=aT^2证明过程是由匀变速直线运动位移公式分别代入时间T求得的(1T,2T.)(记住这个公式适用于任意匀变速运动)初速度为零的匀加速直线运动的比例式:等分运动时间:1T,2T,.nT末顺势速度之比为1:2:3:.:n位移之比:1:4:9:.:n^2第一个T,第二个T.第n个T内位移比为1:3:5:.:2n-1等分位移:一个S,两个S.n个S所需时间:1:根号2:根号3:.:根号n第一个S,第二个S.第n个S经历时间比:1:根号2-1:.:根号n-根号n-1一S末,二S末,nS末瞬时速度比:1:根号2:.:根号n这些推论的证明并不重要,基本方法是代元,将所需要变量带入基本公式中.如T和2T等,位移就代位移公式,速度就代速度公式.这里实在条件有限,特别需要推导过程的话你hi我吧求匀变速直线运动的速度与位移关系公式的详细推导过程 第一式;v=v0+at 最好是从a的定义去理解—单位时间内速度的变化量!物体原来的速度是:V0,匀变速运动的加速度为a,也就是每秒速度的变化量,那么t秒后速度的变化量是:at如何推导比例式(高一匀变速直线运动) 匀变速直线运动的几个重要推论,我大概告诉你:(均在匀变速运动情境下)S2-S1=S4-S3=.=Sn-Sn-1=aT^2证明过程是由匀变速直线运动位移公式分别代入时间T求得的(1T,2T.)初速度为零的匀加速直线运动的比例式:等分运动时间:1T,2T,.nT末顺势速度之比为1:2:3:.:n位移之比:1:4:9:.:n^2第一个T,第二个T.第n个T内位移比为1:3:5:.:2n-1等分位移:一个S,两个S.n个S所需时间:1:根号2:根号3:.:根号n第一个S,第二个S.第n个S经历时间比:1:根号2-1:.:根号n-根号n-1一S末,二S末,nS末瞬时速度比:1:根号2:.:根号n这些推论的证明并不重要,基本方法是代元,将所需要变量带入基本公式中。如T和2T等,位移就代位移公式,速度就代速度公式。匀加速直线运动的公式 一、基本公式:匀加速直线运动的速度和时间公式为:v(t)=v(0)+at匀加速直线运动的位移和时间公式为:s=v(0)t+1/2at^2匀加速直线运动的位移和速度公式为:v(t)^2-v(0)^2=2as其中a为加速度,v(0)为初速度,v(t)为t秒时的速度 s(t)为t秒时的位移条件:物体作匀变速直线运动须同时符合下述两条:1、受恒外力作用2、合外力与初速度在同一直线上。二、位移公式推导:由于匀变速直线运动的速度是均匀变化的,故平均速度=(初速度+末速度)/2=中间时刻的瞬时速度。匀变速直线运动的路程s=平均速度*时间,故s=[(v0+v)/2]*t利用速度公式v=v0+at,得s=[(v0+v0+at)/2]*t=[v0+at/2]*t=v0*t+1/2at^2平均速度=(初速度+末速度)/2=中间时刻的瞬时速度X=aT^2(△X代表相邻相等时间段内位移差,T代表相邻相等时间段的时间长度)X为位移V为末速度Vo为初速度扩展资料在匀变速直线运动中,如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动;如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。若速度方向与加速度方向同向(即同号),则是加速运动;若速度方向与加速度方向相反(即异号),则是减速运动速度无变化(a=0时),若初速度等于瞬时速度,且

#加速度#根号#匀变速直线运动#加速度公式

随机阅读

qrcode
访问手机版