在方差分析中,一旦拒绝原假设,为什么要进行多重比较检验 若主效应不显著,没有必要做多重比较,因为多重比较的意义是已知主效应显著的情况下看看具体是自变量的哪几个水平间差异显著(因为方差分析一般是3个以上自变量水平间的比较,当然也可以做两水平的,但两水平不存在多重分析)。至少是有两个水平之间有差异,若是主效应都不显著,说明所有水平之间的两两差异都不显著,多重分析的结果一目了然了,不必再做。总偏差平方和 SSt=SSb+SSw。组内SSw、组间SSb除以各自的自由度(组内dfw=n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MSw和MSb,一种情况是处理没有作用,即各组样本均来自同一总体,MSb/MSw≈1。另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。那么,MSb>;>;MSw(远远大于)。扩展资料:如果用均方(离差平方和除以自由度)代替离差平方和以消除各组样本数不同的影响,则方差分析就是用组间均方去除组内均方的商(即F值)与1相比较,若F值接近1,则说明各组均值间的差异没有统计学意义,若F值远大于1,则说明各组均值间的差异有统计学意义。实际应用中检验假设成立条件下F值大于特定值的概率可通过查阅F界值表(方差分析用)获得。在观测变量总。
单因素方差分析与多因素方差分析的异同 相同:1.原理都是利用方差比较的方法分析,通过假设检验的过程来判断多个因素是否对因变量产生显著性影响。2.步骤分析的基本步骤相同。a、建立检验假设;b、计算检验统计量F值;c、确定P值并作出推断结果。区别:1.试验指标个数单因素方差分析:1个。多因素方差分析:多于1个。2.适用范围:单因素方差分析:是用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。如考察地区差异是否影响妇女的生育率。多因素方差分析:用来研究两个及两个以上控制变量是否对观测变量产生显著影响。分析不同品种、不同施肥量对农作物产量的影响时,可将农作物产量作为观测变量,品种和施肥量作为控制变量。扩展资料基本分析之后的进一步分析:1.单因素方差分析:在完成上述单因素方差分析的基本分析后,可得到关于控制变量是否对观测变量造成显著影响的结论,接下来还应做其他几个重要分析,主要包括方差齐性检验、多重比较检验。2.多因素方差分析:由分析可知:广告形式与地区的交互作用不显著,先进一步尝试非饱和模型,并进行均值比较分析、交互作用图形分析。a.建立非饱和模型。b.均值比较分析。c.控制变量交互作用的图形分析。参考资料方差分析_多。
实验心理学中,为什么较多使用方差分析而很少用更一般的线性模型?这样是不是损失了每个trial的信息? 我不知道我的理解对不对,以下是我的理解。我们使用方差分析试图了解离散的变量和因变量之间的关系,我们…