广义线性模型可以计算相关系数吗 线性模型是一类统计模型的总称,它包括了线性回归模型、方差分析模型、协方差分析模型和线性混合效应模型(或称方差分量模型)等。许多生物、医学、经济、管理、地质、气象、农业、工业、工程技术等领域的现象都可以用线性模型来近似描述。因此线性模型成为了现代统计学中应用最为广泛的模型之一。
SPSS做极差分析和方差分析 设要做二因素的正交设计,A因素有三个水平,B因素有两个水平。则选择Data->;Orthogonal Design->;generate,弹出的就是正交设计窗口:Factor name框:输入A:单击ADD钮:单击。
SPSS数据分析—广义线性模型 试读结束,如需阅读或下载,请点击购买>;原发布者:胡圆我们前面介绍的一般线性模型、Logistic回归模型、对数线性模型、Poisson回归模型等,实际上均属于广义线性模型的范畴,广义线性模型包含的范围非常广泛,原因在于其对于因变量、因变量的概率分布等条件的限制放宽,使其应用范围加大。广义线性模型由以下几个部分组成1.因变量广义线性模型的因变量还是要去独立性,但是分布不再局限于正态分布一种,而是可以是指数族概率分布的任意一种,其方差也可以不稳定,但必须要能表达为依赖均值的函数2.线性部分广义线性模型因变量与自变量必须为线性关系,即因变量与自变量之间是一次方函数关系,这点和传统线性模型也一样3.连接函数用于描述因变量的期望值是如何和预测值相关联的由上可知,和传统线性模型相比,广义线性模型主要从以下两个方面进行了扩展1.因变量的分布范围扩大2.连接函数的引入通过选定不同的因变量概率分布、连接函数等,就可以拟合各种不同的广义线性模型,例如当因变量分布为正态分布、连接函数为恒等函数时,就是拟合一般线性模型;当因变量分布为二项分布,连接函数为Logit函数时,就是拟合Logistic回归,当因变量分布为Poisson分布,连接函数为对数时,。