结构化学的测定方法 近代测定物质微观结构的实验物理方法的建立,对于结构化学的发展起了决定性的推动作用。X射线衍射方法和原理上相当类似的中子衍射、电子衍射等方法的发现与发展,大大地丰富了人们对物质分子(特别是在晶体中的分子)中原子空间排布的认识,并提供了数以十万种计的晶体和分子结构的可靠结构数据。基于对单质和简单的无机盐类(包括矿物)晶体的衍射测定,人们总结出并不断地精细化了有关原子和离子半径的数据。对于较为复杂的化合物晶体,也通过了衍射法测定了键长、键角等基本参数,还发现了原子之间键合方式的多样性和在不同聚集状态下分子间作用力方式的多样性,尤其是运用X射线晶体衍射方法测定了近三百种生物体中存在的蛋白质大分子结构,其中有些蛋白质的分子量达到十几万甚至几十万原子量单位。此外,通过晶体衍射的研究,使人们能够从分子和晶体结构的角度说明这些物质在晶态下的物理性质(如光学性质和电学性质)。另一类测定结构的方法是谱学方法。谱学方法在提供关于分子能级和运动的信息,尤其是更精细的和动态的结构信息方面起着重要的作用。如分子振动光谱(红外和喇曼光谱)是鉴定物质分子的构成基团的迅速和有力的工具。因而被称为化学物质的“指纹。
什么机构可以进行X射线吸收精细结构光谱(EXAFS)分析,样品大概需要进行些什么前处理? X-射线吸收精细结构(X-ray Absorption Fine Structure)是研究物质局域结构最有力的工具之一,它包括两个方面,即扩展X-射线吸收精细结构(EXAFS)和X-射线吸收近边结构(XANES。
X射线谱的基本原理 X射线谱可分为发射区射线谱和吸收区射线谱,波长范围为700~0.1┱。发射谱有两组:连续谱和叠加其中的标识(特征)谱。连续X射线谱 高速带电质点(如电子、质子、介子等)与物质相碰,受物质原子核库仑场的作用而速度骤减,质点的动能转化为光辐射能的形式放出。带电质点的速度从υ1降到υ2,相应地发生波长为 λ0的辐射,这是h是普朗克常数,с为光速,m是带电质点的质量。因此连续谱存在一短波限,其最短波长λ0相应于υ2=0时的波长。例如,在普通X射线管中,管电压为V(伏)时,其中e为电子电荷。1a是钨阳极X射线管在不同管压下的连续X射线谱,1b是相同管电压(10kV)下不同阳极材料的连续X射线谱。连续谱的λ0与阳极的原子序数Z无关,它仅与质点的动能有关,Z只影响连续谱的积分强度,X射线的输出功率为kiZV2(i为管电流),其效率为kZV,k=1.1~1.4×10-9。强度最大值的波长。X射线管所发射的连续谱强度在空间各个方向的分布是不相等的。连续 X射线谱中某一波长的强度与管电压存在着严格的线性关系,根据这一关系外推,可得相应于该波长的管电压,利用这个方法可求得相当精确的两个基本物理常数h和e的比值。标识(特征)X射线谱,当冲击物质的带电质点或光子的能量足够大时,。