ZKX's LAB

光滑曲线 分段点可导 连续、光滑的函数,一定可导吗?

2021-04-03知识8

为什么函数求导数时非要是平滑曲线? 这涉及到高等数学的知识,微积分的基础其实是极限.高中课本对于数列极限的证明本来就不严密,更不用谈函数的极限了.你只需记住可导必连续,连续不一定可导.等你读了大学自然明白.

光滑的曲线一定有导数嘛?不光滑的曲线折点一定不可导嘛?我发现三小时做一套数一难度很大,基本做不完,你们呢?[] 若函数f(x)在区间(a,b)内具有一阶连续导数,则其图形为一条处处有切线的曲线,且切线随切点的移动而连续转动,这样的曲线称为光滑曲线.做不完没关系,正确率最重要.查看原帖>;>;

要是曲线上任一一点都可导的话那么这条曲线就是光滑不间断的曲线//导数有曲线的情况吗? 要是曲线上任一一点都可导的话那么这条曲线就是光滑不间断的曲线.正确.曲线上任意一点都可导的含义是:左导数、右导数存在且相等,还等于该点的导数值.因此导函数是连续光滑的:比如:y=x^3,y'=3x^2 表明y(x)处处可导,y'(x)处处连续光滑.另外还看出:导函数 y'(x)=3x^2 还是一条曲线.此外举一例:y=|x|即绝对值函数,它在 x=0 点处,y(x)虽连续但不可导.原因是:x=0 时左(-1)、右(+1)导数不相等,y'(x)在x=0处不连续,不光滑 或出现间断.

#光滑曲线 分段点可导

随机阅读

qrcode
访问手机版