ZKX's LAB

连续,光滑的函数,一定可导吗 光滑曲线一定可导吗

2021-04-03知识11

光滑的曲线一定有导数嘛?不光滑的曲线折点一定不可导嘛?我发现三小时做一套数一难度很大,基本做不完,你们呢?[] 若函数f(x)在区间(a,b)内具有一阶连续导数,则其图形为一条处处有切线的曲线,且切线随切点的移动而连续转动,这样的曲线称为光滑曲线.做不完没关系,正确率最重要.查看原帖>;>;

光滑一定可导,不光滑不一定不可导,正确不.请说点依据 不正确的,函数可导或者不可导都有个定义范围,例如y=1/X,函数曲线光滑,函数在(-∞,0)和(0,+∞)上可导,但是在x=0处不可导;y=1(x)y=-1(x≥0)此函数不光滑,但是在全范围内处处可导

要是曲线上任一一点都可导的话那么这条曲线就是光滑不间断的曲线//导数有曲线的情况吗? 要是曲线上任一一点都可导的话那么这条曲线就是光滑不间断的曲线.正确.曲线上任意一点都可导的含义是:左导数、右导数存在且相等,还等于该点的导数值.因此导函数是连续光滑的:比如:y=x^3,y'=3x^2 表明y(x)处处可导,y'(x)处处连续光滑.另外还看出:导函数 y'(x)=3x^2 还是一条曲线.此外举一例:y=|x|即绝对值函数,它在 x=0 点处,y(x)虽连续但不可导.原因是:x=0 时左(-1)、右(+1)导数不相等,y'(x)在x=0处不连续,不光滑 或出现间断.

#光滑曲线一定可导吗

随机阅读

qrcode
访问手机版