ZKX's LAB

已知概率密度函数怎么求它的数学期望和方差 知道密度函数求协方差

2021-04-03知识7

已知概率密度函数怎么求它的数学期望和方差 代入公式。在[a,b]上的均匀分布,期32313133353236313431303231363533e59b9ee7ad9431333431353939望=(a+b)/2,方差=[(b-a)^2]/2。代入直接得到结论。如果不知道均匀分布的期望和方差公式,只能按步就班的做:期望:EX=∫{从-a积到a} xf(x)dx{从-a积到a} x/2a dxx^2/4a|{上a,下-a}0E(X^2)=∫{从-a积到a}(x^2)*f(x)dx{从-a积到a} x^2/2a dxx^3/6a|{上a,下-a}(a^2)/3方差:DX=E(X^2)-(EX)^2=(a^2)/3扩展资料:离散型随机变量与连续型随机变量都是由随机变量取值范围(取值)确定。变量取值只能取离散型的自然数,就是离散型随机变量。例如,一次掷20个硬币,k个硬币正面朝上,k是随机变量。k的取值只能是自然数0,1,2,…,20,而不能取小数3.5、无理数,因而k是离散型随机变量。如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量。例如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3.5、无理数等,因而称这随机变量是连续型随机变量。由于随机变量X的取值 只取决于概率密度函数的积分,所以概率密度函数在个别点上的。

已知二维随机向量 (X,Y)的密度函数f(x,y)=1/3(x+y),求协方差Cov(X,Y) 已知二维随机向量(X,Y)的密度函数f(x,y)=1/3(x+y),求协方差Cov(X,Y)大学问题,挺有意思的,先求恩,记得是先区分是什么分布,然后求概率分布F(x,y)然后求期望E(x,y),方差D。

根据联合密度函数,求协方差 E(XY)=∫(-∞,+∞)∫(-∞,+∞)xy(x+y)dxdy=∫(0,1)∫(0,1)xy(x+y)dxdy=∫(0,1)[(1/3)y+(1/2)y^2]dy=1/3.E(X)=∫(-∞,+∞)∫(-∞,+∞)x(x+y)dxdy=∫(0,1)∫(0,1)x(x+y)dxdy=。

#知道密度函数求协方差

随机阅读

qrcode
访问手机版