trna和rrna是怎么合成的 一、2113tRNA合成方法:1、生物合成:5261在生物体内,DNA分子上4102的tRNA基因经过转录生成tRNA前体,然后被加1653工成成熟的tRNA。tRNA前体的加工包括:切除前体分子中两端或内部的多余核苷酸;形成tRNA成熟分子所具有的修饰核苷酸;如果前体分子3′端缺乏CCA顺序,则需补加上CCA末端。加工过程都是在酶催化下进行的。2、人工合成:1981年,中国科学家王德宝等用化学和酶促合成相结合的方法首次全合成了酵母丙氨酸tRNA。它由76个核苷酸组成,其中包括天然分子中的全部修饰成分,产物具与天然分子相似的生物活性(见核糖核酸和核酸人工合成)。二、rRNA合成方法是由DNA转录过来的,它的合成是以DNA的一条链为模板合成的。而脱氧核糖(五碳糖)与磷酸分子借由酯键相连,组成其长链骨架,排列在外侧,四种碱基排列在内侧。每个糖分子都与四种碱基里的其中一种相连,这些碱基沿着DNA长链所排列而成的序列,可组成遗传密码,指导蛋白质的合成。读取密码的过程称为转录,是以DNA双链中的一条单链为模板转录出一段称为mRNA(信使RNA)的核酸分子。多数RNA带有合成蛋白质的讯息,另有一些本身就拥有特殊功能,例如rRNA、snRNA与siRNA。扩展资料:一、tRNA的结构与功能:。
DNA与RNA的区别 一、区别:1、DNA的组成碱基是ATGC,单位是脱氧核苷酸32313133353236313431303231363533e78988e69d8331333365666264。RNA的组成碱基是AUGC,单位是核糖核苷酸。2、DNA是双螺旋结构,属于遗传物质。RNA一般是单链,不作为遗传物质。3、RNA是以DNA的一条链为模板,以碱基互补配对原则,转录而形成的一条单链,主要功能是实现遗传信息在蛋白质上的表达,是遗传信息向表型转化过程中的桥梁。4、与DNA不同,RNA一般为单链长分子,不形成双螺旋结构,但是很多RNA也需要通过碱基配对原则形成一定的二级结构乃至三级结构来行使生物学功能。RNA的碱基配对规则基本和DNA相同,不过除了A-U、G-C配对外,G-U也可以配对。5、在病毒方面,很多病毒只以RNA作为其唯一的遗传信息载体(有别于细胞生物普遍用双链DNA作载体)。6、RNA中的mRNA是合成蛋白质的模板,内容按照细胞核中的DNA所转录,tRNA是mRNA上碱基序列(即遗传密码子)的识别者和氨基酸的转运者,rRNA是组成核糖体的组分,是蛋白质合成的工作场所。二、DNA是高分子聚合物,DNA溶液为高分子溶液,具有很高的粘度,可被甲基绿染成绿色。DNA对紫外线(260nm)有吸收作用,利用这一特性,可以对DNA进行含量测定。当核酸变性。
蛋白质磷酸化的定义是什么? 蛋白质的磷酸化反应2113是指通过酶促反应把磷酸基团从一5261个化合4102物转移到另一个化合物上的过程,是生物体内存在的一种普遍的调节方式,在细胞信号的传递过程中占有极其重要的地位。已经发现在人体内有多达2000个左右的蛋白质激酶和1000个左右的蛋白质磷酸酶基因。蛋白质的磷酸化是指由蛋白质激酶催化的把ATP或GTP上γ位的磷酸基转移到底物蛋白质氨基酸残基上的过程,其逆转过程是1653由蛋白质磷酸酶催化的,称为蛋白质脱磷酸化。蛋白质的磷酸化修饰是生物体内重要的共价修饰方式之一,其磷酸化和去磷酸化这一可逆过程,受蛋白激酶和磷酸酶的协同作用控制.酶蛋白的磷酸化是在蛋白激酶的催化下,由ATP提供磷酸基及能量完成的,而去磷酸化则是由磷蛋白磷酸酶催化的水解反应.在哺乳动物细胞生命周期中,大约有1/3的蛋白质发生过磷酸化修饰;在脊椎动物基因组中,有5%的基因编码的蛋白质是参与磷酸化和去磷酸化过程的蛋白激酶和磷酸(酯)酶[1].真核细胞的蛋白质磷酸化位点主要发生在丝氨酸(Ser)、苏氨酸(Thr)和酪氨酸(Tyr)残基侧链的羟基上,不同的蛋白激酶可识别和修饰不同蛋白质的不同位点,生物体内能被磷酸化修饰的蛋白质组成磷酸化蛋白质组(phos-phoproteome),磷酸化。
真核生物基因表达调控有哪些环节 真核生物基因表达调控与原核生物有很大的差异。原核生物同一群体的每个细胞都和外界环境直接接触,它们主要通过转录调控,以开启或关闭某些基因的表达来适应环境条件(主要是营养水平的变化),故环境因子往往是调控的诱导物。而大多数真核生物,基因表达调控最明显的特征时能在特定时间和特定的细胞中激活特定的基因,从而实现“预定”的,有序的,不可逆的分化和发育过程,并使生物的组织和器官在一定的环境条件范围内保持正常的生理功能。真核生物基因表达调控据其性质可分为两大类:第一类是瞬时调控或叫可逆调控,相当于原核生物对环境条件变化所做出的反应。瞬时调控包括某种代谢底物浓度或激素水平升降时及细胞周期在不同阶段中酶活性和浓度调节。第二类是发育调节或称不可逆调控,这是真核生物基因表达调控的精髓,因为它决定了真核生物细胞分化,生长,和发育的全过程。据基因调控在同一时间中发生的先后次序,又可将其分为转录水平调控,转录后的水平调控,翻译水平调控及蛋白质加工水平的调控,研究基因调控应回答下面三个主要问题:①什么是诱发基因转录的信号?②基因调控主要是在那个环节(模板DNA转录,mRNA的成熟或蛋白质合成)实现的?③不同水平。
简述酶催化反应的三大特点 1、高效性:酶的催化效率比无机催化剂更高,使得更快;2、专一性:一种酶只能催化一种或一类底物,如蛋白酶只能催化成多肽、二肽酶可催化各种形成的二肽;3、温和性:是指酶所催化的化学反应一般是在较温和的条件下进行的。拓展资料酶(enzyme)是由活细胞产生的、对其底物具有高度特异性和高度催化效能的蛋白质或RNA。酶是一类极为重要的生物催化剂(biocatalyst)。由于酶的作用,生物体内的化学反应在极为温和的条件下也能高效和特异地进行。随着人们对酶分子的结构与功能、酶促反应动力学等研究的深入和发展,逐步形成酶学(enzymology)这一学科。酶的化学本质是蛋白质(protein),因此它也具有一级、二级、三级,乃至四级结构。按其分子组成的不同,可分为单纯酶和结合酶。仅含有蛋白质的称为单纯酶;结合酶则由酶蛋白和辅助因子组成。
简述蛋白质及酶工程的概念、研究内容及应用。 蛋白质工程和酶工程是继基因工程之后发展起来的生物学技术,它们是基因工程的一个重要组成部分,或者说是新一代的基因工程。以下简要介绍蛋白质工程和酶工程的原理和应用。。
什么是肝的生物转化作用 生物转化作用(biotransformation)是指药物在发挥药效后要排出体外时,所产生的结构改变。生物转化是机体对外源化学物处置的重要的环节,是机体维持稳态的主要机制。某些异物可以影响机体内同生物转化作用有关的酶的活动,这种影响为酶的抑制。有些异物可以使一些酶的活力降低,从而降低异物的代谢速度,使其在体内的滞留时间延长,毒性增强。肝脏是生物转化作用的主要器官,在肝细胞微粒体、胞液、线粒体等部位均存在有关生物转化的酶类。毒性化学物质若是水溶性物质,则可由肾脏排出。若为脂溶性物质,则需要经过代谢过程后才能够由肾脏排出。扩展资料影响生物转化的因素如下:生物转化作用受年龄、性别、肝脏疾病及药物等体内外各种因素的影响。例如新生儿生物转化酶发育不全,对药物及毒物的转化能力不足,易发生药物及毒素中毒等。老年人因器官退化,对氨基比林、保泰松等的药物转化能力降低,用药后药效较强,副作用较大。此外,某些药物或毒物可诱导转化酶的合成,使肝脏的生物转化能力增强,称为药物代谢酶的诱导。生物转化的特点是:多样性(同一物质经多种反应实现转化),连续性(第一、第二两相反应连续进行),双重性(物质进行生物转化后毒性可能。
生物化学的利弊 物化学是一门重要的医学基础课程,该课程分子结构立体抽象,代谢反应错综复杂,理论点多面广。而学生在有限的时间内能较好的、全面的、系统的掌握生物化学的知识并不容易,。