ZKX's LAB

超顺磁多糖纳米粒子和人造磁珠在哪些方面做过比较? 超顺磁性纳米粒子成骨

2021-03-27知识3

纳米技术~超顺磁性中的单畴和多畴各指什么?

纳米科技在医疗上有哪些应用? 德国magforce http://www. magforce.de/。对于帕金森症,一种常用的治疗方法是脑深部电刺激(DBS)手术(关于DBS请参见 http:// naowaike.baike.com/arti cle-228563.html)。。

超顺磁性的特点

超顺磁多糖纳米粒子和人造磁珠在哪些方面做过比较? 超顺磁性纳米粒子成骨

超顺磁多糖纳米粒子和人造磁珠在哪些方面做过比较? 德国学者报道了含有75%~80%铁氧化物的超顺磁多糖纳米粒子(200~400nm)的合成和物理化学性质。将它与纳米尺寸的SiO2相互作用,提高了颗粒基体的强度,并进行了纳米磁性颗粒在分子生物学中的应用研究,试验了具有一定比表面的葡萄糖和二氧化硅增强的纳米粒子。在下列方面与工业上可获得的人造磁珠做了比较:DNA自动提纯、蛋白质检测、分离和提纯、生物物料中逆转录病毒检测、内毒素消除和磁性细胞分离等。

什么是纳米材料 纳米材料又称为超微颗粒材料,是指在三维空间中至少有一维处于纳米尺寸(0.1-100?nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。由。

什么是纳米生物陶瓷材料? 纳米陶瓷是20世纪80年代中期发展起来的先进材料,是由纳米级水平显微结构组成的新型陶瓷材料,它的晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸等都只限于100nm量级的水平。纳米结构所具有的小尺寸效应、表面与界面效应使纳米陶瓷呈现出与传统陶瓷显著不同的独特性能。纳米陶瓷已成为当前材料科学、凝聚态物理研究的前沿热点领域,是纳米科学技术的重要组成部分。生物陶瓷作为一种生物医用材料,无毒副作用,与生物组织具有良好的相容性和耐腐蚀性,备受人们的青睐,在临床上已有广泛的应用,用于制造人工骨、骨钉、人工齿、牙种植体、骨髓内钉等。目前,生物陶瓷材料的研究已从短期的替代与填充发展成为永久性牢固种植,从生物惰性材料发展到生物活性材料。但是由于常规陶瓷材料中气孔、缺陷的影响,该材料低温性能较差,弹性模量远高于人骨,力学性能不匹配,易发生断裂破坏,强度和韧性都不能满足临床上的要求,致使其应用受到很大的限制。纳米材料的问世,使生物陶瓷材料的生物学性能和力学性能大大提高成为可能。与常规陶瓷材料相比,纳米陶瓷中的内在气孔或缺陷尺寸大大减小,材料不易造成穿晶断裂,有利于提高固体材料的断裂韧性。而晶粒的细化又使晶。

四氧化三铁制备化学实验 最低0.27元开通文库会员,查看完整内容>;原发布者:wangmingplm实验一:共沉2113淀法制备具有超顺磁性的纳米四氧5261化三铁粒子1、实验背景4102有关纳米粒子的制1653备方法及其性能研究备受多学者的重视,这不仅因为纳米粒子在基础研究方面意义重大,而且在实际应用中前景广阔。在磁记录材料方面,磁性纳米粒子可望取代传统的微米级磁粉,Fe3O4超细粉体由于化学稳定性好,原料易得,价格低廉,已成为无机颜料中较重要的一种,被广泛应用于涂料,油墨等领域;而在电子工业中超细Fe3O4是磁记录材料,用于高密度磁记录材料的制备;它也是气、湿敏材料的重要组成部分。超细Fe3O4粉体还可作为微波吸收材料及催化剂。另外使用超细Fe3O4粉体可制成磁流体。Fe3O4纳米粒子的制备方法有很多,大体分为两类:一是物理方法,如高能机械球磨法,二是化学方法,如化学共沉淀法、溶胶-凝胶法、水热合成法、热分解法及微乳液法等。但各种方法各有利弊;物理方法无法进一步获得超细而且粒径分布窄的磁粉,并且还会带来研磨介质的污染问题;溶胶-凝胶法、热分解法多采用有机物为原料,成本较高,且有毒害作用;水热合成法虽容易获得纯相的纳米粉体,但是反应过程中温度的高低,升温速度,搅拌速度。

#超顺磁性纳米粒子成骨

随机阅读

qrcode
访问手机版