ZKX's LAB

正三棱柱有一个直径为2 正三棱柱的棱切球

2021-03-26知识11

正三棱柱的内切球与外接球 正三棱柱不一定有内切球如果正三棱柱有内切球,则正三棱柱的高一定是球的直径正三棱柱一定有外接球,但一定不是正三棱柱的高直径为根号(h^2+4a^2/3),其中h为三棱柱的高,a为底面边长

三棱柱的内切球半径怎么求? 内切圆圆心为异面两棱中点连线MN的中点O,半径为点O到平面BCD的距离OG的长度,设棱长AB为a,则NB=a/2,OM=根号2/4,由△MOG∽MBN得OG/BN=MO/MB。扩展资料性质:1、底面是等边三角形。2、侧面是三个全等的等腰三角形。3、顶点在底面的射影是底面三角形的中心(也是重心、垂心、外心、内心)。4、斜高、侧棱、底边的一半构成的直角三角形;(含侧棱与底边夹角)5、高、斜高、斜高射影构成的直角三角形;(含侧面与底面夹角)6、高、侧棱、侧棱射影构成的直角三角形;(含侧棱与底面夹角)7、斜高射影、侧棱射影、底边的一半构成的直角三角形。

正三棱柱有一个直径为2 正三棱柱的棱切球

正三棱柱内有一内切球,半径为R,则这个正三棱柱的体积是: ___ . 由题意,正三棱柱的高是直径为2R,正三棱柱底面正三角形的内切圆的半径是R,所以正三角形的边长是23R,高是3R正三棱柱的体积 V=12?23R?3R?2R=63R3.故答案为:63R3

一个棱长为a的正三棱柱中有一个内切球,求球的体积与表面积 首先给来出您棱柱的概念源:有两个面互相平行,其bai余各面都是四边du形,zhi并且每相邻两个四边形的公dao共边都互相平行,由这些面所围成的几何体叫做棱柱.1、三棱柱:V=S·h,S是底面面积,h是高。表面积就是侧面积加两个底面积。2、正三棱柱:体积应该是底边为x的三角形面积乘以高=$sqrt(3)/4x^2h$。表面积就是两个三角形的面积加上三个长方形的面积=$sqrt(3)/2x^2+3hx$

正三棱柱的内切球和外接球的体积之比 求详细解释 最好画图 在线等 正三棱柱有内切球的话2113则正三棱柱的高一定是球的直径5261,此时正4102三棱柱的侧棱长为底面边长的(根号3)/3倍;再看外1653接球令上下的等边三角形边长为a,侧棱长为h 由等边三角形的性质,容易证明三角形几何中心到三角形三顶点的距离:S=(√3)/3 现在想象用一把刀从三棱柱的中间水平切割过去,把三棱柱切成了两个相同的三棱柱 那么新出现的平面的中心到原三棱柱的距离均为√[(h^2)+4*(a^2)/3]{勾股定理} 那么这个点就是外接球心 这个共同距离就是半径由于内切球 h=(根号3)/3a 外接球的半径为根号15/3a面积比(根号15/3)^2:(根号3/3)^2=5:1

求正三棱柱的棱切球半径及求法,最好有图. 正三棱锥内切球半径可以用等体积法,内切球圆心连接四个顶点,把内切球半径看成新三棱锥的高用四棱柱体积除以4再乘以3,再除以一面的面积

正三棱柱内有一个内切球,已知球的半径为R,则这个正三棱柱的底面边长 这道题是解决正三2113角形的性质问题,5261底边长为二倍的根号三。由题4102意可得截面图,1653如下图。已知是一个正三棱柱,因此截面是一个正三角形内内切一个圆。已知圆的半径为R,可以将圆心和三角形的一个顶点连接可以得到一个顶角为30°的直角三角形,因此由三角函数可得底边的一半长度为根号三倍的R,因此底边长为二倍的根号三。扩展资料本题中运用了正三角形的性质,正三角形的其他性质如下:1、等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。2、等边三角形每条边上的中线、高线和角平分线互相重合。(三线合一)3、等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或角的平分线所在的直线。4、等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)5、等边三角形内任意一点到三边的距离之和为定值。(等于其高)6、等边三角形拥有等腰三角形的一切性质。(因为等边三角形是特殊的等腰三角形)参考资料:-正三角形的性质

#正三棱柱的棱长都相等吗#正三棱柱的棱切球

随机阅读

qrcode
访问手机版