ZKX's LAB

超极化期间能否形成动作电位 动作电位的产生机制(去极化、复极化、超极化的机制)?

2021-03-26知识8

动作电位的产生机制(去极化、复极化、超极化的机制)? 当细胞接受到百外界刺激时,钠离子通道打开,引起钠离子瞬间大量内流,这使得静息电位减小乃至消失,称为去极化过度程;钠离子进一步内流可以形成瞬间内正外负的动作电位,称为质膜的反极化,当钠离子内外平衡时,动作电位随即达道最问大值;在钠离子大量进入细胞时,钾离子通道逐渐打开,钠离子通道从失活到关闭,答钾离子通道完全打开,这时钾离子的大量外流使得质膜再度极化,以至于超过原来的静息电位,此内时称为超极化;超极化时膜电位又恢复至静息电位。这期间,钠离子通道经历了关闭态-开放态-无活容性态-关闭态的变化过程。

动作电位中离子通道、钠钾泵的活性变化? 神经细胞在静息条件下维持稳定的外正内负的膜电位,即静息电位,这主要是由于Na-K泵的工作,膜上的通道蛋白将钠离子不断排到膜外,将钾离子运输到膜内,但由于细胞膜对于钾离子的通透性大于钠离子,所以运输到膜内的钾离子会少量溢出膜外,这样就在细胞膜内外形成稳定的外正内负电压差,即,静息电位,这个过程又叫做极化.当细胞接受到外界刺激时,钠离子通道打开,引起钠离子瞬间大量内流,这使得静息电位减小乃至消失,称为去极化过程;钠离子进一步内流可以形成瞬间内正外负的动作电位,称为质膜的反极化,当钠离子内外平衡时,动作电位随即达道最大值;在钠离子大量进入细胞时,钾离子通道逐渐打开,钠离子通道从失活到关闭,钾离子通道完全打开,这时钾离子的大量外流使得质膜再度极化,以至于超过原来的静息电位,此时称为超极化;超极化时膜电位又恢复至静息电位.这期间,钠离子通道经历了关闭态-开放态-无活性态-关闭态的变化过程.随后细胞又会在钠钾泵的作用下不断将钠离子排出膜外,钾离子吸收到膜内,当然这时不会再影响膜电位这种外正内负的状态了.钠钾泵对于静息电位的维持起着至关重要的作用.这就是神经细胞静息以及兴奋传导时的分子变化过程.

静息电位和动作电位的产生和传导机制 当神经细胞处于静息状态时,k+通道开放(Na+通道关闭),这时k+会从浓度高的膜内向浓度低的膜外运动,使膜外带正电,膜内带负电。膜外正电的产生阻止了膜内k+的继续外流,使膜电位不再发生变化。静息状态时,细胞膜外Na+浓度大于膜内,Na+有向膜内扩散的趋势,而且静息时膜内存在着相当数值的负电位,这种电场力也吸引Na+向膜内移动,动作电位是可兴奋细胞受到刺激时在静息电位的基础上产生的可扩布的电位变化过程。扩展资料:注意事项:1、在静息电位的基础上,给c一个适当的刺激,可触发其产生可传播的膜电位波动。AP峰电位:-70mV迅速去极化至-50mV的升支和迅速复极至静息电位水平的降支共同。2、峰电位后出现的膜电位低幅、缓慢波动。后负电位(<;静息电位),正后电位。3、Na通道有关闭、激活、失活状态,关闭和失活是稳态,激活是瞬态,不应期K通道有激活和去激活状态,去极化期间电导不降低,只有回至起始水平才减小。4、C内带负电荷的核酸和蛋白质多,吸引正电离子,所以通透大的进入的就多,所以膜对哪种离子(K)通透大就对静息电位的影响越大,越接近。参考资料来源:-静息电位参考资料来源:-动作电位参考资料来源:-动作电位。

峰电位对应于绝对不应期,负后电位相当于相对不应期和超常期,正后电位相当于低常期.为什么 峰电位时,给与任何大小的刺激都不能再次激发动作电位,这就是绝对不应期.负后电位是膜处于下降支和去极化的状态,给与一定刺激能够再次激发动作电位,并且所需刺激小于正常诱发动作电位的刺激,这就是超长期,也是相对不应期.正后电位膜处于超极化状态,需要较大刺激才能诱发动作电位,这就是低常期.

超极化的白话用法

#超极化期间能否形成动作电位

随机阅读

qrcode
访问手机版