数学中的光滑曲线,“光滑”表示什么含义? 若函数f(x)在区间(a,b)内具有一阶连续导数,则其图形为一条处处有切线的曲线,且切线随切点的移动而连续转动,这样的曲线称为光滑曲线.
光滑曲线在数学上的定义是什么?? 高数的“切线转动”定义,数学表达是什么?如果我有一个复杂(或简单)的函数,难道我只能画出函数后才能…
怎么理解光滑曲线的定义 这就相当于一2113个函数f在某一5261点可导,但是导数不连续。这样的函数或4102者说曲线是存在的,但不1653是常见函数,需要特别构造出来。例如f(x)=x^2*sin(1/x),f(0)=0。f处处可导,但导数在0点不连续。换句话说,曲线(x,f(x))在原点不光滑。
很多数学模型中有「平滑的曲线」,这个「平滑」是什么概念? 不懂什么叫做平滑的曲线,有没有一个严格的数学定义?最好能解释简单点。
数学 请问什么是光滑曲线?
华东师大数学分析中光滑曲线为什么叫连续可微且导数不同时为0。 你的例子里dx/dt=1,dy/dt=1,不会出现0一般来讲\"光滑\"曲线需要处处有切线,切线的方向是(dx/dt,dy/dt),如果两个导数都是0的话这个切线方向就有问题了事实上你可以把t理解为时间,x和y理解为运动轨迹上的坐标,导数同时为零的点表示运动其实是静止的,如果出现了这样的点,局部上就是从运动到静止再重新运动,很明显有两段比较独立的运动,根本没有办法保证轨迹的光滑性
光滑曲线的定义是什么? 所谓光滑就是没有尖点、断点,在数学上就是指“可导”(导数存在)。
复变函数曲线的光滑的定义问题以下是复变函数曲线光滑的定义:x(t),y(t)是两个连续的实变函数,那么,方程组x=x(t),y=y(t) (a
数学 请问什么是光滑曲线? 你应该是高中生吧?各个领域的光滑曲线解释不一样。高等数学微积分这块的定义是:若函数f(x)在区间(a,b)内具有一阶连续导数,则其图形为一条处处有切线的曲线,且切线随切点的移动而连续转动,这样的曲线称为光滑曲线。高中生的话可以理解为曲线每一点都存在切线。不是任意曲线都存在切线,是光滑曲线才每一点都存在切线。这涉及到曲线的定义。高中接触到的曲线都是光滑的,所以在你看来都是任一点都是有切线的。到以后你会慢慢发现的。切点的移动切线不停转动。就是切点慢慢变动,切线斜率慢慢变大或者变小。比如x的平方这个函数,在0的右边,从0开始,切线斜率为0,越往左,斜率越大,角度越大,这样就是转动。如果你是大学生的话可以给你举个例子。f(x)=x^2*sin(1/x),f(0)=0。f处处可导,但导数在0点不连续。换句话说,曲线(x,f(x))在原点不光滑。
数学 曲线积分的定义 为什么是光滑曲线?不光滑又怎么了?! 光滑,你可以理解为其导函数是连续的,而连续函数必可积,所以为了保证下面的计算是可以实现的,我们要求曲线光滑。