ZKX's LAB

协方差法估计:pcov和pmcov函数 自协方差函数的估计

2021-03-25知识12

如何用直观的例子理解随机过程理论中随机过程的自相关函数和协方差函数的概念含义,它们在信号领域有何应用? 在学概率统计之前,我们学习的都是确定的函数。概率统计讨论了一次取值时获得的值是不确定的,而随机过程…

协方差法估计:pcov和pmcov函数

如何用直观的例子理解随机过程理论中随机过程的自相关函数和协方差函数的概念含义,它们在信号领域有何应用?

协方差法估计:pcov和pmcov函数 自协方差函数的估计

时间序列分析-第四章 均值和自协方差函数的估计 最低0.27元开通文库会员,查看完整内容>;原发布者:hotyouthy第四章均值和自协方差函数的估计本章结构均值的估计自协方差函数的估计白噪声检验§4.1均值的估计相合性中心极限定理收抄敛速度X的模拟计算均值、自协方差函数的作用AR,MA,ARMA模型的参数可以由自协方差函数唯一确定袭。有了样本之后,可以先估计均值和自协方差函数。然后由均值和自协方差函数解出模型参数。均值和自协方差可以用矩估计法求。还要考百虑相合性,渐进分布,收敛速度等问题。均值估计公式设x1,x2,xN是平稳列{Xt的观测。EXt的点估计为xN1Nxk1Nk把观测样本看成随机度样本时记作大写的X1,X2,XN相合性设统计量N是的估计,在统计学中有如下的定义^1如果EN,则称EN是的无偏估计。2如果当N,EN.则称N是的渐进无偏估计。3如果N依概率收敛到,则称N是的相知合估计。4如果Na.s.收敛到,则称N是的强相合估计。一般情况下,无偏估计比有偏估计来得好,对_于由(1.1)定义的XN。有EXN1N1EXkNk1N.k1N所以XN是均道值的无偏估计。均值估计的相合性好的估计量起码应是相合的。否则,估计量不收敛到要估计的参数,

怎么用一组样本估计自协方差函数 x(t)自协方差函数:R(τ)=E[(x(t)-μx)(x(t+τ)-μx)]其中 τ 是时间延迟,μx 是x(t)的数学期望.对于离散数据公式类似.

协方差怎么计算,请举例说明 cov(x,y)=EXY-EX*EY协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,62616964757a686964616fe59b9ee7ad9431333366303131建议你看一下概率论cov(x,y)=EXY-EX*EY协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论举例:Xi 1.1 1.9 3Yi 5.0 10.4 14.6E(X)=(1.1+1.9+3)/3=2E(Y)=(5.0+10.4+14.6)/3=10E(XY)=(1.1×5.0+1.9×10.4+3×14.6)/3=23.02Cov(X,Y)=E(XY)-E(X)E(Y)=23.02-2×10=3.02此外:还可以计算:D(X)=E(X^2)-E^2(X)=(1.1^2+1.9^2+3^2)/3-4=4.60-4=0.6 σx=0.77D(Y)=E(Y^2)-E^2(Y)=(5^2+10.4^2+14.6^2)/3-100=15.44 σy=3.93X,Y的相关系数:r(X,Y)=Cov(X,Y)/(σxσy)=3.02/(0.77×3.93)=0.9979表明这组数据X,Y之间相关性很好。扩展资料:协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的。

怎么计算自协方差函数 2113自协方差在统计学中,特定5261时间序列或者连续信号4102Xt的自协方差是信号与其经过时间平移1653的信号之间的协方差。如果序列的每个状态都有一个平均数E[Xt]=μt,那么自协方差为其中 E 是期望值运算符。如果Xt是二阶平稳过程,那么有更加常见的定义:其中k是信号移动的量值,通常称为延时。如果用方差σ^2 进行归一化处理,那么自协方差就变成了自相关系数R(k),即有些学科中自协方差术语等同于自相关。(自协方差的概念)自协方差函数是描述随机信号X(t)在任意两个不同时刻t1,t2,的取值之间的二阶混合中心矩,用来描述X(t)在两个时刻取值的起伏变化(相对与均值)的相关程度,也称为中心化的自相关函数。

#自协方差函数的估计

qrcode
访问手机版