简述细胞信号转导的几条通路? 受体介2113导细胞信号通路包括:a.CAMP信号通路:由CM上的五种5261组分组成—激4102活型激素受体,1653Rs;与GDP结合的活化型调蛋白,Gs;腺苷酸环化酶,c;与GDP结合的抑制型调节蛋白,Gi;抑制型激素受体,Ri。激素配体+Rs→Rs构象改变暴露出与Gs结合位点→与Gs结合→Gs2变化排斥GDP结合GTP而活化→使三聚体Gs解离出α和βγ→暴露出α与腺苷酸环化酶结合位点→与A环化E结合并使之活化→将ATP→CAMP→激活靶酶和开启基因表达→GTP水解,α恢复构象与A环化酶解离→C的环化作用终止→α和βγ结合回复。b.PIP2信号通路:胞外signal+膜受体→PIP2IP3+DAG,IP3→内源钙→细胞溶质,胞内Ca2+浓度升高→启动Ca2+信号系统,DAGCM上活化蛋白激酶PKC→DG/PKC信号传递passwa。扩展资料细胞信号转导特点是:①高度亲和力,②高度特异性,③可饱和性1、受体:位于细胞膜上或细胞内,能特异性识别生物活性分子并与之结合,进而引起生物学效应的特殊蛋白质,膜受体多为镶嵌糖蛋白:胞内受体全部为DNA结合蛋白。受体在细胞信息传递过程中起极为重要的作用。2、G蛋白:即鸟苷酸结合蛋白,是一类位于细胞膜胞浆面、能与GDP或GTP结合的外周蛋白,由α、β、γ三个亚基组成。以。
油菜素甾醇的信号转导 油菜素甾醇(BR)的细胞信号通路研究是二十一世纪植物学领域最前沿的领域之一。通过十多年的分子遗传学、生物化学、蛋白质组学和结构生物学研究,已经基本建立了完整的油菜素甾醇细胞信号转导途径。BR与细胞膜表面受体激酶BRI1(BRassinosteroid Insensitive 1)结合并被感知,BRI1与共受体BAK1相互结合,形成异二聚体,自磷酸化或相互磷酸化。负调控蛋白BKI1(BRI1 Kinase Inhibitor 1)与在BR没有感知的情况下与BRI1结合阻止BRI1与其共受体BAK1的结合而负调控BR信号通路,当BR受体BRI1感知到油菜素甾醇后磷酸化BKI1,使BKI1从细胞膜上解离到细胞质中,BAK1因而能与BRI1结合。激活的BRI1-BAK1磷酸化下游激酶BSKs(BR Signaling Kinases),BSKs可能激活下游的磷酸酶BSU1,BSU1去磷酸化而抑制下游的糖原合成激酶3样激酶BIN2(Brassinosteroid INsensitive 2)。最新的进展是发现了与BSKs同属于受体样胞质激酶(RLCK)的CDG1(constitutive differential growth 1)能磷酸化BSU1,并且其磷酸化BSU1的能力受BRI1的激活而增强,磷酸化的BSU1去磷酸化能力增强而抑制BIN2的活性。BIN2可以磷酸化转录因子BES1和BZR1,14-3-3蛋白将磷酸化的BES1和BZR1滞留在细胞质内,且一类磷酸酶PP2。
细胞信号转导的传递途径主要有哪些 专业名词叫2113细胞信号转导从大类上看共分为1.G蛋白5261介导的信号转导途4102径G蛋白可与鸟嘌呤核苷酸可1653逆性结合.由x和γ亚基组成的异三聚体在膜受体与效应器之间起中介作用.小G蛋白只具有G蛋白亚基的功能,参与细胞内信号转导.信息分子与受体结合后,激活不同G蛋白,有以下几种途径:(1)腺苷酸环化酶途径通过激活G蛋白不 细胞信号转导同亚型,增加或抑制腺苷酸环化酶(AC)活性,调节细胞内cAMP浓度.cAMP可激活蛋白激酶A(PKA),引起多种靶蛋白磷酸化,调节细胞功能.(2)磷脂酶途径激活细胞膜上磷脂酶C(PLC),催化质膜磷脂酰肌醇二磷酸(PIP2)水解,生成三磷酸肌醇(IP3)和甘油二酯(DG).IP3促进肌浆网或内质网储存的Ca2+释放.Ca2+可作为第二信使启动多种细胞反应.Ca2+与钙调蛋白结合,激活Ca2+钙调蛋白依赖性蛋白激酶或磷酸酯酶,产生多种生物学效应.DG与Ca2+能协调活化蛋白激酶C(PKC).2.受体酪氨酸蛋白激酶(RTPK)信号转导途径受体酪氨酸蛋白激酶超家族的共同特征是受体本身具有酪氨酸蛋白激酶(TPK)的活性,配体主要为生长因子.RTPK途径与细胞增殖肥大和肿瘤的发生关系密切.配体与受体胞外区结合后,受体发生二聚化后自身具备(TPK)活性并催化胞内区酪氨酸。
第一信使和第二信使的区别?
植物生理学:植物细胞信号转导过程? 这可是大学的专业知识啊,参见下文:植物体内的信号传导 Signal Transduction生物体的生长发育受遗传信息及环境信息的调节控制。基因决定了个体发育的基本模式,但其表达和。
cAMP介导的信号转导途径有哪些?举例说明其应用
如何调控pka信号转导途径 根据提示操作
cAMP介导的信号转导途径有哪些?举例说明其应用 cAMP介导的信号通路是由于G蛋白的作用 cAMP是第二信使 具体途径有很多