ZKX's LAB

光滑曲线的定义是什么? 曲线的光滑表示

2021-03-24知识4

什么叫做光滑曲线?没有凸起或凹陷棱角的曲线,如抛物线 没有凸起或凹陷棱角的曲线,也可以说是由无数个半径不同的圆弧相切连接而成 光滑曲线是可以用一个连续函数式来表示。

分段光滑的简单闭曲线是什么意思?x^2+y^2>0是分段光滑的简单闭曲线么? 在二维平面上,分段光滑的简单闭曲线就是由一系列首尾相接的光滑曲线段组成的最终形成的封闭环,且中间不得有交叉,也即任意两段曲线除了端点之外,均无另外的交点.比如多边形即是.x^2+y^2>;0表示XOY面上除了原点(0,0)外的所有区域,显然不是分段光滑的简单闭曲线.

怎么理解光滑曲线的定义? 这就相当于一个函数f在某一点可导,但是导数不连续。这样的函数或者说曲线是存在的,但不是常见函数,需要特别构造出来。例如f(x)=x^2*sin(1/x),f(0)=0。f处处可导,但导数在0点不连续。换句话说,曲线(x,f(x))在原点不光滑。y=|x|在x=0就连续,不光滑

光滑曲线的定义是什么? 所谓光滑就是没有尖点、断点,在数学上就是指“可导”(导数存在)。

光滑曲线的定义是什么?

数学中的光滑曲线,“光滑”表示什么含义? 若函数f(x)在区间(a,b)内具有一阶连续导数,则其图形为一条处处有切线的曲线,且切线随切点的移动而连续转动,这样的曲线称为光滑曲线.

请问什么是光滑曲线? 你应该是高中生吧?各个领域的光滑曲线解释不一样.高等数学微积分这块的定义是:若函数f(x)在区间(a,b)内具有一阶连续导数,则其图形为一条处处有切线的曲线,且切线随切点的移动而连续转动,这样的曲线称为光滑曲线.高中生的话可以理解为曲线每一点都存在切线.不是任意曲线都存在切线,是光滑曲线才每一点都存在切线.这涉及到曲线的定义.高中接触到的曲线都是光滑的,所以在你看来都是任一点都是有切线的.到以后你会慢慢发现的.切点的移动切线不停转动.就是切点慢慢变动,切线斜率慢慢变大或者变小.比如x的平方这个函数,在0的右边,从0开始,切线斜率为0,越往左,斜率越大,角度越大,这样就是转动.如果你是大学生的话可以给你举个例子.f(x)=x^2*sin(1/x),f(0)=0.f处处可导,但导数在0点不连续.换句话说,曲线(x,f(x))在原点不光滑.

光滑曲线的定义是什么? 曲线的光滑表示

曲线光滑表示函数和导函数都在该区间连续? 知道函数肯定连续的,不知道导函数连续怎么理解 canonbli 的帖子曲线光滑只能表示一阶导数存在或者为无穷大,与导函数连续没有关系啊!

#曲线的光滑表示

随机阅读

qrcode
访问手机版