ZKX's LAB

传热学 圆柱坐标系下的导热微分方程的推导方法 圆柱坐标系下连续方程

2021-03-22知识7

拉普拉斯方程极坐标形式是怎么推导出来的 用极坐标5261、直角坐标变换公式+拉普拉斯方程得来。4102推倒过程如下:u''xx+u''yy=0x=ρ1653cosα,y=ρsinα?u/?ρ=?u/?x.?x/?ρ+?u/?y.?y/?ρ=u'x.cosα+u'y.sinα?2u/?ρ2=cosα(u''xx.x'ρ+u''xy.y'ρ)+sinα(u''yy.y'ρ+u''yx.x'ρ)cosα(u''xx.cosα+u''xy.sinα)+sinα(u''yy.sinα+u''yx.cosα)u''xx.cos2α+2u''xy.sinαcosα+u''yy.sin2αρ2?2u/?ρ2=ρ2u''xx.cos2α+2ρ2u''xy.sinαcosα+ρ2u''yy.sin2α.(1)?u/?α=?u/?x.?x/?α+?u/?y.?y/?α=u'x.(-ρsinα)+u'y.ρcosα?2u/?α2=(-ρsinα)(u''xx.x'α+u''xy.y'α)+ρcosα(u''yx.x'α+u''yy.y'α)-u'x.(ρcosα)-u'y.ρsinα(-ρsinα)(u''xx.(-ρsinα)+u''xy.ρcosα)+ρcosα(u''yx.(-ρsinα)+u''yy.ρcosα)ρ[u'x.cosα+u'y.sinα](-ρsinα)(u''xx.(-ρsinα)+u''xy.ρcosα)+ρcosα(u''yx.(-ρsinα)+u''yy.ρcosα)ρ?u/?ρρ2sin2αu''xx-2ρ2u''xysinαcosα+ρ2u''yy.cos2α-ρ?u/?ρ.(2)(1)+(2)ρ2?2u/?ρ2+?2u/?α2=ρ2u''xx(cos2α+sin2α)+ρ2u''yy.(cos2。

传热学 圆柱坐标系下的导热微分方程的推导方法 圆柱坐标系下连续方程

柱坐标球坐标系下导热微分方程详细推导, 原发布者:brucewings7 原发布者:brucewings7 柱坐标及球坐标下导热微分方程的推导及分析哈尔滨工业大学市政学院摘要:运用热力学第一定律,建立温度场,利用微分方程在不同。

流体连续性方程在球坐标系下的形式怎么推导 流体连续方程里边的时间微分不变。就是里边有一个算子 div=(d/dx,d/dy,d/dz)*这个算子直接作用在直角坐标下的向量v的三个。

流体连续性方程在圆柱坐标系下的形式怎么推导 对于不可压缩均质流体,在圆柱坐标系下,流体流动的连续性方程可以表示为: 网页 微信 知乎 图片 视频 明医 科学 汉语 英文 问问 。? 2021SOGOU.COM 京ICP证050897号

#圆柱坐标系下连续方程

随机阅读

qrcode
访问手机版