紫外可见吸收光谱的形成原理 原理:在有机化合物分子中有形成单键的σ电子、有形成双键的π电子、有未成键的孤对n电子。当分子吸收一定能量的辐射能时,这些电子就会跃迁到较高的能级,此时电子所占的轨道称为反键轨道,而这种电子跃迁同内部的结构有密切的关系。在紫外吸收光谱中,电子的跃迁有σ→σ*、n→σ*、π→π*和n→π*四种类型,各种跃迁类型所需要的能量依下列次序减小:σ→σ*>;n→σ*>;π→π*>;n→π*由于一般紫外可见分光光度计只能提供190~850nm范围的单色光,因此,我们只能测量n→σ*的跃迁,n→π*跃迁和部分π→π*跃迁的吸收,而对只能产生200nm以下吸收的σ→σ*的跃迁则无法测量。扩展资料:在数值上等于1mol/L的吸光物质在1cm光程中的吸光度,ε=A/CL,与入射光波长、溶液的性质及温度有关。(1)吸光物质在特定波长和溶剂中的一个特征常数,定性的主要依据。(2)值愈大,方法的灵敏度愈高。物质的紫外吸收光谱基本上是其分子中生色团及助色团的特征,而不是整个分子的特征。如果物质组成的变化不影响生色团和助色团,就不会显著地影响其吸收光谱,如甲苯和乙苯具有相同的紫外吸收光谱。另外,外界因素如溶剂的改变也会影响吸收光谱,在极性溶剂中某些化合物吸收。
什么结构化合物产生紫外吸收光谱? 紫外光谱的研究对象大 生色团对分子紫外吸收的影响 多是具有共轭双键结构的分子。如,胆甾酮(a)与异亚丙基丙酮(b)分子结构差异很大,但两者具有相似的紫外吸收峰。两分子中相同的O=C-C=C共轭结构是产生紫外吸收的关键基团。特点 1、紫外可见吸收光谱所对应的电磁波长较短,能量大,它反映了分子中价电子能级跃迁情况。主要应用于共轭体系(共轭烯烃和不饱和羰基化合物)及芳香族化合物的分析。2、由于电子能级改变的同时,往往伴随有振动能级的跃迁,所以电子光谱图比较简单,但峰形较宽。一般来说,利用紫外吸收光谱进行定性分析信号较少。3、紫外可见吸收光谱常用于共轭体系的定量分析,灵敏度高,检出限低。应用 总述 物质的紫外吸收光谱基本上是其分子中生色团及助色团的特征,而不是整个分子的特征。如果物质组成的变化不影响生色团和助色团,就不会显著地影响其吸收光谱,如甲苯和乙苯具有相同的紫外吸收光谱。另外,外界因素如溶剂的改变也会影响吸收光谱,在极性溶剂中某些化合物吸收光谱的精细结构会消失,成为一个宽带。所以,只根据紫外光谱是不能完全确定物质的分子结构,还必须与红外吸收光谱、核磁共振波谱、质谱以及其他化学、物理方法共同配合。
简述紫外光谱分析的基本原理 最低0.27元开通文库会员,查看完整内容>;原发布者:ppt搜索者第二章紫外7a686964616fe59b9ee7ad9431333433623762光谱2.1紫外光谱的基本原理2.1.1紫外光谱的产生、波长范围紫外吸收光谱是由于分子中价电子的跃迁而产生的。分子中价电子经紫外或可见光照射时,电子从低能级跃迁到高能级,此时电子就吸收了相应波长的光,这样产生的吸收光谱叫紫外光谱紫外吸收光谱的波长范围是100-400nm(纳米),其中100-200nm为远紫外区,200-400nm为近紫外区,一般的紫外光谱是指近紫外区。2.1.2有机分子电子跃迁类型可以跃迁的电子有:电子,电子和n电子。跃迁的类型有:*,n*,*,n*。各类电子跃迁的能量大小见下图:既然一般的紫外光谱是指近紫外区,即200-400nm,那么就只能观察*和n*跃迁。也就是说紫外光谱只适用于分析分子中具有不饱和结构的化合物。2.1.3紫外光谱表示法1.紫外吸收带的强度吸收强度标志着相应电子能级跃迁的几率,遵从Lamder-Beer定律IAlogclIoA:吸光度,:消光系数,c:溶液的摩尔浓度,l:样品池长度I0、I分别为入射光、透射光的强度2.紫外光谱的表示法紫外光谱图是由横坐标、纵坐标和吸收曲线组成的。横坐标表示吸收光的波长,用nm(纳米)为单位。纵坐标表示吸收光的吸收强度,。