ZKX's LAB

用Matlab求解非线性约束优化问题 求解有界约束优化问题的几类方法

2021-03-21知识7

如何用matlab求解非线性约束优化问题,对于非线性约束的优化问题,matla有个很好的函数fmico可以很容易解决。之前一个经验已经详细介绍了fmico的用法,下面通过一个例子来。

用Matlab求解非线性约束优化问题 求解有界约束优化问题的几类方法

采用直接法求解约束优化问题时,新的迭代点需要同时满足什么条件 一、局部最优解与全局最优解 对于具有不等式约束的优化问题,若目标函数是凸集上的.二、起作用约束与不起作用约束 对于一般约束优化问题,其约束分为两类:等式约束和.三、约束优化问题极小点的条件 约束优化问题极小点的条件,是指在满足约束条件下,.四、库恩-塔克条件 在优化实用计算中,为判断可行迭代点是否是约束最优点,或者对输.

牛顿法求解无约束最优化问题的方法 B6公式是从B2对x求导得到的pk是定义的方向,沿着负梯度方向,后面是证明这样确实是f(x)减小的方向。这些在《数值计算》这些书里都有。

有约束最优化问题,用matlab求解 假设最优时候的a1不等于a2,那么取a1'=a2'=max{a1,a2}将是更优的解。因此,最优时候的a1与a2必定相等。给定角加速度a时,加速时间越长那么转过的角度越多。在加速度不大于0.5g的约束下,加速时间最多可以是:加速与减速过程所转过的角度是a*t(a)^2,是个随a递减的函数。假设最优时候的角加速度为a,加速时间t(a),那么可以增大a到某个值a',加速时间为t(a'),使得a'*t(a')^2=at^2。因此,最优时候的加速时间必取到最大值。综上,可得最终优化式子:代码如下:g=9.8;r=.056;t=(a)(g^2/(4*r^2*a^4)-1/a^2)^(1/4);f=(a)t(a)+22.2/a/t(a);a=fminsearch(f,1e-6);fprintf('a1=a2=f\\nt1=t3=f\\nt2=f\\n',a,t(a),22.2/a/t(a)-t(a))

#求解有界约束优化问题的几类方法

随机阅读

qrcode
访问手机版