ZKX's LAB

ar2自协方差函数推导 AR(2)和MA(2)的自协方差函数与自相关函数推导

2021-03-20知识5

时间序列分析-第四章 均值和自协方差函数的估计 最低0.27元开通文库会员,查看完整内容>;原发布者:hotyouthy第四章均值和自协方差函数的估计本章结构均值的估计自协方差函数的估计白噪声检验§4.1均值的估计相合性中心极限定理收抄敛速度X的模拟计算均值、自协方差函数的作用AR,MA,ARMA模型的参数可以由自协方差函数唯一确定袭。有了样本之后,可以先估计均值和自协方差函数。然后由均值和自协方差函数解出模型参数。均值和自协方差可以用矩估计法求。还要考百虑相合性,渐进分布,收敛速度等问题。均值估计公式设x1,x2,xN是平稳列{Xt的观测。EXt的点估计为xN1Nxk1Nk把观测样本看成随机度样本时记作大写的X1,X2,XN相合性设统计量N是的估计,在统计学中有如下的定义^1如果EN,则称EN是的无偏估计。2如果当N,EN.则称N是的渐进无偏估计。3如果N依概率收敛到,则称N是的相知合估计。4如果Na.s.收敛到,则称N是的强相合估计。一般情况下,无偏估计比有偏估计来得好,对_于由(1.1)定义的XN。有EXN1N1EXkNk1N.k1N所以XN是均道值的无偏估计。均值估计的相合性好的估计量起码应是相合的。否则,估计量不收敛到要估计的参数,

异方差会使估计量系数不符合经济理论吗 计量经济学期末试卷(2004年6月,满分70分)一(24分)将中国城镇居民按照人均年收入分成组,以2003年的组平均数为样本观测值,建立中国城镇居民消费函数模型,以人均年消费额为被解释变量,经过理论分析和经验检验,选择人均年收入和人均储蓄余额作为解释变量,解释变量和被解释变量之间的关系为直接线性关系。模型形式为:⑴分别写出该问题的总体回归函数、总体回归模型、样本回归函数和样本回归模型;⑵分别写出随机误差项具有同方差且无序列相关、具有异方差但无序列相关、具有异方差且具有一阶序列相关时的方差—协方差矩阵;⑶当模型满足基本假设时,写出关于普通最小二乘法参数估计量的正规方程组;⑷直观判断该模型是否具有异方差性?为什么?⑸如果该模型存在异方差性,写出加权最小二乘法参数估计量的矩阵表达式,并指出在实际估计时权矩阵是如何选择的;⑹指出“偏回归系数”的实际含义,并指出解释变量满足什么条件时可以用一元回归模型得到相同的的估计结果?⑺如果仅以入均收入200元及以上的收入组为样本,用OLS和ML分别估计模型,参数估计量是否等价?为什么?⑻如果模型中未包括显著的解释变量,可能导致模型违背哪些基本假设?二(8分)简要回答。

向量自回归模型(VAR)到底厉害在哪里? Vector autoregressive model 是多元时间序列分析中最基础的一族模型之一,我们可以从两个角度来理解它,…

就是AR(1),AR(2) ,MA(1),MA(2),ARMA(m,n)的自相关系数和偏自相关的系数的算法的公式,以前《时间序列分析》的书中有提到,但是那本书不见了,所以公式也不记得了. 你可以查查matlab 里面有公式,直接计算

ar2自协方差函数推导 AR(2)和MA(2)的自协方差函数与自相关函数推导

求时间序列高手指导AR(2)模型的偏自相关系数如何求出来的? 一、自协方差和e69da5e887aa3231313335323631343130323136353331333330326565自相关系数p阶自回归AR(p)自协方差 r(t,s)=E[X(t)-EX(t)][X(s)-EX(s)]自相关系数ACF=r(s,t)/[(DX(t).DX(s))^0.5]二、平稳时间序列自协方差与自相关系数1、平稳时间序列可以定义r(k)为时间序列的延迟k自协方差函数:r(k)=r(t,t+k)=E[X(t)-EX(t)][X(t+k)-EX(t+k)]2、平稳时间序列的方差相等DX(t)=DX(t+k)=σ2,所以DX(t)*DX(t+k)=σ2*σ2,所以[DX(t)*DX(t+k)]^0.5=σ2而r(0)=r(t,t)=E[X(t)-EX(t)][X(t)-EX(t)]=E[X(t)-EX(t)]^2=DX(t)=σ2简而言之,r(0)就是自己与自己的协方差,就是方差,所以,平稳时间序列延迟k的自相关系数ACF等于:p(k)=r(t,t+k)/[(DX(t).DX(t+k))^0.5]=r(k)/σ2=r(k)/r(0)3、平稳AR(p)的自相关系数具有两个显著特征:一是拖尾性;二是呈负指数衰减。三、偏相关系数对于一个平稳AR(p)模型,求出滞后k自相关系数p(k)时,实际上得到并不是x(t)与x(t-k)之间单纯的相关关系。因为x(t)同时还会受到中间k-1个随机变量x(t-1)、x(t-2)、…、x(t-k+1)的影响,而这k-1个随机变量又都和x(t-k)具有相关关系,所以自相关系数p(k)里实际掺杂了其他变量对x(t)与x(t-k)。

#ar2自协方差函数推导

qrcode
访问手机版