ZKX's LAB

微量元素 微量元素富集系数

2020-07-24知识9

煤中有害微量元素的富集率及脱除率 统计4个洗煤厂及其相应模拟洗选煤泥样中有害元素的富集率以及各精煤样中有害元素的脱除率,发现太西(TX)无烟煤中大部分有害元素表现出最高的脱除率,特别是陆源富集元素(REE,V,Th,Hf,Cr等)脱除率较高,与稀土元素洗选分析一致。但总体来看,各样品中脱除率及富集率数值差异较大(表6-5,表6-6)。表6-5 各煤泥样品中有害元素的富集率(%)为选用的中位数值(同表4-8),余者使用算术平均值。为了准确地反映研究区精煤、煤泥中有害组分的平均脱除率与富集率,计算了各数据的算术平均值与中位数(表6-5,表6-6)。算术平均值能减小系统误差,而中位数能减小偶然误差(浙江大学数学系,1979)。由此综合考察,当某元素的算术平均值与中位数相差不大时,使用算术平均值,当两者相差较大时,参考下面的有害元素与灰分的相关系数(即矿物亲和性大小,表6-8,本节第四部分),决定使用算术平均值还是中位数。据此,煤泥中有害元素的富集率及精煤中有害元素的脱除率大小顺序为:富集率>0的元素有Se,Zn,St,d,Hg,Ba,As,Sb,Cu,V,Sp,d,Cd,Mn,Pb,Th,Ad,Cr,U,Ni,Hf,REE,Co和Be,富集率的元素为P,Sr,Cl,Br及Mo(图6-16);脱除率>0 的元素有 Hg。有害微量元素在飞灰中的分布与富集 各电厂飞灰中微量元素的含量见表7-2。可以看出,除Hg,Cd,Br,Se外,几乎所有元素在飞灰中的含量均大于该元素在原煤中的含量,表明它们在飞灰中都有不同程度的富集。飞灰中微量元素的相对富集系数见表7-4。可以见到,相同元素在不同电厂飞灰中的相对富集系数差别很大,并且在神头电厂明显高于其他电厂。例如,As在神头电厂飞灰中的相对富集系数为4.73,而在上湾电厂仅为0.21。如此大的差异,一方面可能与不同电厂所采用的燃烧设备不同,导致其燃烧工艺差异较大;再者不同电厂的除尘设备不同,所采集的飞灰样品的粒度和其他物理参数也可能有较大差异;最后也可能与测量误差有关。由图7-3 可见,挥发性元素 Hg,Cd,Br,Se 在飞灰中的富集系数仍然较低,而Mn,Hf,V,Ti,Al 的相对富集系数均超过1.0。对比图7-2和图7-3可以看出:As,Pb,Cd,Be,Se,U,Be,Sb,K,Al,Ca在飞灰中的富集系数略有增加,说明它们在飞灰中的富集程度高于底灰。同时,As的增加幅度较大,说明As在逸散过程中有相当一部分的气态物质又重新吸附到了细小飞灰颗粒的表面。Mn,Zn,Mg和稀土元素在飞灰中的富集系数比底灰略有降低,其原因有待进一步探讨。图7-3 飞灰中微量元素相对富集系数分布。地层中微量元素含量背景及共生组合 一、确定地层微量元素含量背景的方法地层元素含量背景的研究,传统的方法是采用算术平均值作为含量背景,这种方法忽略了后期地质作用的影响。实际上,现在所测得的地层中的元素含量值,可能包括了两次或更多次地球化学作用,第一是地层形成时的地球化学作用,第二是后期地球化学作用的叠加与改造。只有去掉后期叠加和改造的影响,才能真正了解地层形成时的地球化学作用特征。特别是对于以找矿为目的地质研究,只有分析出各地层形成时成矿元素的地球化学特征(原始丰度)和后期地球化学作用造成的元素富集或亏损,才能真正分析矿源层、含矿层及成矿规律,以指导找矿勘探。根据Vistelius(1960)的“地球化学过程的基本定律”,单一地球化学过程形成的单一地质体中,化学元素的含量服从正态分布,也就是说沉积岩形成时元素的初始含量服从正态分布,而后期地球化学作用叠加的元素含量的混合分布则偏离正态分布(多峰偏态分布),且大多为正偏。Vistelius给出了多次地球化学作用叠加情况下元素含量的概论分布密度函数的表达式为:湘中区域古流体及锡矿山锑矿成矿作用模拟式中:fi(x)—正态分布密度函数;pi—第i个正态母体的权系数;i—地球化学作用的期次。根据。

#黄铁矿

随机阅读

qrcode
访问手机版