ZKX's LAB

紫外光谱的光谱图 紫外光谱的精细结构

2021-03-20知识2

紫外光谱的光谱图 右图是乙酸苯酯的紫外光谱图。紫外光谱图提供两个重要636f70793231313335323631343130323136353331333361303032的数据:吸收峰的位置和吸收光谱的吸收强度。从图中可以看出,化合物对电磁辐射的吸收性质是通过一条吸收曲线来描述的。图中以波长(单位nm)为横坐标,它指示了吸收峰的位置在260 nm处。纵坐标指示了该吸收峰的吸收强度,吸光度为0.8。吸收光谱的吸收强度是用Lambert(朗伯)—Beer(比尔)定律来描述的,这个定律可以用下面的公式来表示:A=lg(I0/I)=kcl=lg(1/T)式中A称为吸光度(absorbance)。I0是入射光的强度,I是透过光的强度,T=I/I0为透射比(transmiπance),又称为透光率或透过率,用百分数表示。l是光在溶液中经过的距离(一般为吸收池的长度)。c是吸收溶液的浓度。κ=A/(cl),称为吸收系数(absorptivity)。若c以mol/L为单位,l以cm为单位,则κ称为摩尔消光系数或摩尔吸收系数,单位为c㎡·mol(通常可省略)。A,T,(1-T)(吸收率),κ,lgκ都能作为紫外光谱图的纵坐标,但最常用的是κ,lgκ。上图是以吸光度A为纵坐标的紫外光谱图,下面四幅图是以T,1-T,κ,lgκ为纵坐标的紫外光谱图。由图可知,透过率与吸收率正好相反,如吸收率为。

紫外光谱的光谱图 紫外光谱的精细结构

在进行紫外光谱分析时,所选用的溶剂都要知道它的最低使用波长限度,为什么 溶剂在紫外光区有吸抄收,截止波长:袭就是溶剂吸光2113度为1 AU时的波长,紫5261外检测器4102分析时的波长要在截止波1653长之上。当小于截止波长的辐射通过溶剂时,溶剂对此辐射产生强烈吸收,它严重干扰组分的吸收测量。溶剂会影响吸收光谱的强度和溶剂分子光谱的精细结构。一般说来,溶剂的极性增大会使溶质的精细结构清晰度减弱,甚至完全消失而呈现一个宽峰。所以,在溶解度容许范围内,应选择使用极性较小的溶剂。另外,溶剂本身也有自己的吸收光谱,该光谱如果与溶质的吸收光谱有重叠,就会影响对溶质吸收带的观察。因此,紫外吸收光谱分析中常用的溶剂都有一个波长限度,低于此限度时溶剂的吸收必须加以考虑。

简述紫外光谱分析的基本原理 最低0.27元开通文库会员,查看完整内容>;原发布者:ppt搜索者第二章紫外7a686964616fe59b9ee7ad9431333433623762光谱2.1紫外光谱的基本原理2.1.1紫外光谱的产生、波长范围紫外吸收光谱是由于分子中价电子的跃迁而产生的。分子中价电子经紫外或可见光照射时,电子从低能级跃迁到高能级,此时电子就吸收了相应波长的光,这样产生的吸收光谱叫紫外光谱紫外吸收光谱的波长范围是100-400nm(纳米),其中100-200nm为远紫外区,200-400nm为近紫外区,一般的紫外光谱是指近紫外区。2.1.2有机分子电子跃迁类型可以跃迁的电子有:电子,电子和n电子。跃迁的类型有:*,n*,*,n*。各类电子跃迁的能量大小见下图:既然一般的紫外光谱是指近紫外区,即200-400nm,那么就只能观察*和n*跃迁。也就是说紫外光谱只适用于分析分子中具有不饱和结构的化合物。2.1.3紫外光谱表示法1.紫外吸收带的强度吸收强度标志着相应电子能级跃迁的几率,遵从Lamder-Beer定律IAlogclIoA:吸光度,:消光系数,c:溶液的摩尔浓度,l:样品池长度I0、I分别为入射光、透射光的强度2.紫外光谱的表示法紫外光谱图是由横坐标、纵坐标和吸收曲线组成的。横坐标表示吸收光的波长,用nm(纳米)为单位。纵坐标表示吸收光的吸收强度,。

#紫外光谱的精细结构#紫外光谱的横坐标是

随机阅读

qrcode
访问手机版