ZKX's LAB

求时间序列高手指导AR(2)模型的偏自相关系数如何求出来的? ar 2 自协方差函数

2021-03-19知识15

时间序列分析-第四章 均值和自协方差函数的估计 最低0.27元开通文库会员,查看完整内容>;原发布者:hotyouthy第四章均值和自协方差函数的估计本章结构均值的估计自协方差函数的估计白噪声检验§4.1均值的估计相合性中心极限定理收抄敛速度X的模拟计算均值、自协方差函数的作用AR,MA,ARMA模型的参数可以由自协方差函数唯一确定袭。有了样本之后,可以先估计均值和自协方差函数。然后由均值和自协方差函数解出模型参数。均值和自协方差可以用矩估计法求。还要考百虑相合性,渐进分布,收敛速度等问题。均值估计公式设x1,x2,xN是平稳列{Xt的观测。EXt的点估计为xN1Nxk1Nk把观测样本看成随机度样本时记作大写的X1,X2,XN相合性设统计量N是的估计,在统计学中有如下的定义^1如果EN,则称EN是的无偏估计。2如果当N,EN.则称N是的渐进无偏估计。3如果N依概率收敛到,则称N是的相知合估计。4如果Na.s.收敛到,则称N是的强相合估计。一般情况下,无偏估计比有偏估计来得好,对_于由(1.1)定义的XN。有EXN1N1EXkNk1N.k1N所以XN是均道值的无偏估计。均值估计的相合性好的估计量起码应是相合的。否则,估计量不收敛到要估计的参数,

AR(2)模型的一般情况如何求自相关函数? 拜托各位数学同仁啦~学渣一枚正准备补考…过不了就得留级啊+_+

求时间序列高手指导AR(2)模型的偏自相关系数如何求出来的? ar 2 自协方差函数

AR(2)和MA(2)的自协方差函数与自相关函数推导 自相关函数除以方差就是自协方差函数!Φxx(τ)=γxx(τ)/σ 2.(1)式中:Φxx(τ)-自协方差函数 γxx(τ)-自相关函数 x-随机过程 τ-时间延迟 σ 2-x 的方差自协方差函数。

自相关函数和自协方差函数 去文库,查看完整内容>;内容来自用户:FENGLEI37142113(9.2.7)|由于平稳5261随机信号的统计4102特性与时间的起点无关,1653设,则有。所以,平稳随机信号的自相关函数是时间间隔t的函数,记为Rxx(t).2.自协方差函数(Autocovariance function)自协方差函数是描述随机信号X(t)在任意两个不同时刻t1,t2,的取值之间的二阶混合中心矩,用来描述X(t)在两个时刻取值的起伏变化(相对与均值)的相关程度,也称为中心化的自相关函数。定义7 实随机信号X(t)的自协方差函数定义为3

AR(2)模型的自协方差函数递推公式 r如何推? AR(2)模型的自协方差函数递推公式r如何推?AR(2)模型的自协方差函数递推公式r如何推导?

求时间序列高手指导AR(2)模型的偏自相关系数如何求出来的? 一、自协方差和e69da5e887aa3231313335323631343130323136353331333330326565自相关系数p阶自回归AR(p)自协方差 r(t,s)=E[X(t)-EX(t)][X(s)-EX(s)]自相关系数ACF=r(s,t)/[(DX(t).DX(s))^0.5]二、平稳时间序列自协方差与自相关系数1、平稳时间序列可以定义r(k)为时间序列的延迟k自协方差函数:r(k)=r(t,t+k)=E[X(t)-EX(t)][X(t+k)-EX(t+k)]2、平稳时间序列的方差相等DX(t)=DX(t+k)=σ2,所以DX(t)*DX(t+k)=σ2*σ2,所以[DX(t)*DX(t+k)]^0.5=σ2而r(0)=r(t,t)=E[X(t)-EX(t)][X(t)-EX(t)]=E[X(t)-EX(t)]^2=DX(t)=σ2简而言之,r(0)就是自己与自己的协方差,就是方差,所以,平稳时间序列延迟k的自相关系数ACF等于:p(k)=r(t,t+k)/[(DX(t).DX(t+k))^0.5]=r(k)/σ2=r(k)/r(0)3、平稳AR(p)的自相关系数具有两个显著特征:一是拖尾性;二是呈负指数衰减。三、偏相关系数对于一个平稳AR(p)模型,求出滞后k自相关系数p(k)时,实际上得到并不是x(t)与x(t-k)之间单纯的相关关系。因为x(t)同时还会受到中间k-1个随机变量x(t-1)、x(t-2)、…、x(t-k+1)的影响,而这k-1个随机变量又都和x(t-k)具有相关关系,所以自相关系数p(k)里实际掺杂了其他变量对x(t)与x(t-k)。

#ar 2 自协方差函数

随机阅读

qrcode
访问手机版