ZKX's LAB

三棱锥体积公式 正三棱锥侧棱与底边垂

2021-03-18知识12

求高中数学必修2所有性质定理和判定定理的证明方法。 http://wenku.baidu.com/search?word=%B8%DF%D6%D0%B1%D8%D0%DE%B6%FE%CA%FD%D1%A7%B6%A8%C0%ED%D7%DC%BD%E1&lm=0&od=0文库里有好多高中数学必修二复习基本概念公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内.公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理3:过不在同一条直线上的三个点,有且只有一个平面.推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.公理4:平行于同一条直线的两条直线互相平行.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交.异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线.两异面直线所成的角:范围为(0°,90°)esp.空间向量法两异面直线间距离:公垂线段(有且只有一条)esp。.

三棱锥体积公式2113:三棱锥5261棱锥的侧面展开图是由4个三角4102形组成的,展开图的面积,1653就是棱锥的侧面积,则:(其中Si,i=1,2为第i个侧面的面积)S全=S棱锥侧+S底S正三棱锥=1/2CL+S底V=S(底面积)·H(高)÷3三棱锥的底面面积S加顶点A'面积0除以2的平均面积1/2S的一个三棱柱乘以高h,就是三棱锥体积:V=1/2(S+0)h=1/2ShS面积三角形AC乘h'除以2因为正三棱锥底面为正三角形,所以高线位于任意顶点与底边中点连线,又三线合一,所以重心位于高线距顶点2/3处,即可算出顶点与重心的距离。又知正三棱锥边长,即可根据勾股定理算出圆心所在直线(即顶点与底面重心的连线)的长度,即可算出底面与球心的距离(即内切球半径)。扩展资料:正三棱锥的与棱相切的球心在顶点与底面重心的连线的距底面1/4处(正三棱锥三心重合)一般的三棱锥与四条棱都相切的球心在四个面上的射影与四个面的内心重合,据此可确定球心位置。三棱锥顶点射影与底面三角形的“心”设有三棱锥P-ABC,P在平面ABC上的射影为O,现讨论当三棱锥满足什么条件时,O分别是△ABC的外心、内心、旁心、重心、垂心(三角形五心)。若O是△ABC的内心,则O到三边距离相等,且O在△ABC内。设O到BC。

三棱锥体积公式 正三棱锥侧棱与底边垂

求高中立体几何公式和定理? 基本概念 公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内.公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理3:过不在同一条直线上的三个点,有且只有一个平面.推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.公理4:平行于同一条直线的两条直线互相平行.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面 1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交.异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线.两异面直线所成的角:范围为(0°,90°)esp.空间向量法 两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法 2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点—相交直线;(2)没有公共点—平行或异面 直线和平面的位置关系:直线和平面只有三种位置关系:在。

普通三棱锥外接球的半径公式是什么? 相关计算:和计复算内切球心制一样算出圆心所在直bai线(du即顶点与底面重心的连线zhi)的dao长度,即可算出顶点与球心的距离(即外接球半径)。其中R为外接球半径,a、A、B如图,为A、B所在面二面角。若二面角为90°,即两面垂直时公式简化为扩展资料旁心由于旁心和内心的性质相同,都是到三角形三边距离相等的点。只不过内心在三角形内部而旁心在三角形外部。所以讨论的思路和内心相同,差异就在O与△ABC的位置关系而已。因此直接得到以下定理:当三棱锥的顶点到底面三角形三边距离相等,且顶点在底面的射影在底面三角形的外部,那么射影是旁心。当三棱锥的各个侧面与底面构成的二面角相等,且顶点在底面的射影在底面三角形的外部,那么射影是旁心。当三棱锥的顶点到底面三角形三边距离相等,且顶点在底面的射影在底面三角形的内部,那么射影是内心。当三棱锥的各个侧面与底面构成的二面角相等,且顶点在底面的射影在底面三角形的内部,那么射影是内心。参考资料:-三棱锥

三棱锥的这个判定选项为什么是错的? 呵呵 这个嘛 可以画个图的 侧面是等腰,可以一条腰是底面的边,一条腰是侧棱 然后另一条棱与它们不等 这样就不是正三棱锥拉

正四面体侧棱与底面所成角正弦值 正四面体,侧棱和底面所成的角就是侧棱与底面正三角形的外接圆半径(三线合一)所成的角 设棱长为a 外接圆半径R=√3a/3,正四面体的高h=√6a/3 正弦值=h/a=√6/3

#正三棱锥侧棱与底面#正三棱锥侧棱与底边垂

qrcode
访问手机版