ZKX's LAB

AR(2)和MA(2)的自协方差函数与自相关函数推导 证明互相关函数和互协方差函数性质

2021-03-18知识10

如何证明 1Var[X+Y]=Var[X]+2Cov(X,Y)+Var[Y]就用定义证明就行,Var(X)=E(X^2)-[E(X)]^2Var(Y)=E(Y^2)-[E(Y)]^2Cov(X,Y)=E(XY)-E(X)E(Y)所以Var[X+Y]=E[(X+Y)^2]-[E(X+Y)]^2=E(X^2+2XY+Y^2)-[E(X)+E(Y)}^2={.

概率论与数理统计应用中有关两个随机过程互不相关的条件 证明两个随机过程互不相关要用什么性质,是要互相关函数和互协方差函数均为0吗?只要其中一个就行,因为相关系数为0。

AR(2)和MA(2)的自协方差函数与自相关函数推导 自相关函数除以方差就是自协方差函数!Φxx(τ)=γxx(τ)/σ 2.(1)式中:Φxx(τ)-自协方差函数 γxx(τ)-自相关函数 x-随机过程 τ-时间延迟 σ 2-x 的方差自协方差函数。

相关函数的协方差的性质 协方差的性质:1、Cov(X,Y)=Cov(Y,X);2、Cov(aX,bY)=abCov(X,Y),(a,b是常数);3、Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)。由协方差定义,可以看出Cov(X,X)=D(X),。

自协方差函数和自相关系数有什么联系 自相关函数除以方差就是自协方差函数!Φxx(τ)=γxx(τ)/σ 2.(1)式中:Φxx(τ)-自协方差函数γxx(τ)-自相关函数x-随机过程τ-时间延迟σ 2-x 的方差自协方差函数是归一化了的相关函数:Φxx(0)=γxx(0)/σ 2=1.(2)因为自相关函数在零点的值等于方差。

最低0.27元开通文库会员,查看完整内容>;原发布者:lyj7712edu相关函数的性质一、相关函数的性质二、应用举例一、相关函数的性质假设X(t)和Y(t)是平稳相关过程,RX()、RY()和RXY()分别是它们的自相关函数和互相关函数.性质12RX(0)E[X2(t)]ΨX0.平稳过程X(t)的“平均功率”性质2RX()RX(),即RX()是的偶函数.注意:互相关函数既不是奇函数,也不是偶函数,但满足RXY()RYX(),实际问题中只需计算或测量RX(),RY(),RXY()和RYX()在0的值.性质3关于自相关函数和自协方差函数有不等式2RX()RX(0)和CX()Cx(0)X.此式表明:自相关(自协方差)函数都在0处取到最大值.类似的,可推得以下有关互相关函数和互协方差函数的不等式:RXY()RX(0)RY(0),2CXY()CX(0)CY(0).2性质4RX()是非负定的.n即对于任意数组t1,t2,tnT和任意实值函数g(t)都有RX(titj)g(ti)g(tj)0.i,j1说明由于任一连续函数,只要具有非负定性,那么该函数必是某平衡过程的自相关函数.所以对于平稳过程而言,自相关函数的非负定性是最本质的.证明根据自相关函数的定义和均值运算性质有RX(titj)g(ti)g(tj)i,j1E[X(ti)X(tj)]g(ti)g(tj)i,j1nn

如何通俗易懂地解释「协方差」与「相关系数」的概念? 多的不扯(2016.12.16更新,保留这句):①协方差就是看两个变量是否正负相关,也就是数值上变化是否同或…

相关函数的协方差的性质 协方差的性质:62616964757a686964616fe4b893e5b19e313334313532391、Cov(X,Y)=Cov(Y,X);2、Cov(aX,bY)=abCov(X,Y),(a,b是常数);3、Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)。由协方差定义,可以看出Cov(X,X)=D(X),Cov(Y,Y)=D(Y)。协方差函数定义为:若X(t)=Y(t)+i*Z(t),Y,Z为实过程,则称X(t)为复随机过程,相关函数定义为:扩展资料协方差反映了两个变量之间的相关程度:协方差是两个变量与自身期望做差再相乘,然后对乘积取期望。也就是说,当其中一个变量的取值大于自身期望,另一个变量的取值也大于自身期望时,即两个变量的变化趋势相同,此时,两个变量之间的协方差取正值。反之,即其中一个变量大于自身期望时,另外一个变量小于自身期望,那么这两个变量之间的协方差取负值。当x与y变化趋势一致时,两个变量与自身期望之差同为正或同为负,其乘积必然为正,所以其协方差为正;反之,其协方差为负。所以协方差的正负性反映了两个变量的变化趋势是否一致。再者,当x和y在某些时刻变化一致,某些时刻变化不一致时,在第一个点,x与y虽然变化,但是y的变化幅度远不及x变化幅度大,所以其乘积必然较小。在第二个点,x与y变化一致且变化幅度都很。

#证明互相关函数和互协方差函数性质

随机阅读

qrcode
访问手机版