ZKX's LAB

如何选择合适的预测方法 指数平滑法适用条件

2020-07-24知识13

指数平滑法优缺点及适应范围 指数平滑预测法的2113优点:对不同时间的数据的非等权处5261理较符合实际情况4102。实用中仅需选择一个模1653型参数,即可进行预测,简便易行。具有适应性,也就是说预测模型能自动识别数据模式的变化而加以调整。指数平滑预测法的缺点:对数据的转折点缺乏鉴别能力,但这一点可通过调查预测法或专家预测法加以弥补。长期预测的效果较差,故多用于短期预测。适应范围指数平滑法进一步加强了观察期近期观察值对预测值的作用,对不同时间的观察值所赋予的权数不等,从而加大了近期观察值的权数,使预测值能够迅速反映市场实际的变化。权数之间按等比级数减少,此级数之首项为平滑常数a,公比为(1-a)。指数平滑法对于观察值所赋予的权数有伸缩性,可以取不同的a值以改变权数的变化速率。如a取小值,则权数变化较迅速,观察值的新近变化趋势较能迅速反映于指数移动平均值中。因此,运用指数平滑法,可以选择不同的a值来调节时间序列观察值的均匀程度(即趋势变化的平稳程度)。扩展资料指数平滑法的计算中,关键是α的取值大小,但α的取值又容易受主观影响,因此合理确定α的取值方法十分重要,如果数据波动较大,α值应取大一些,可以增加近期数据对预测结果的影响。。如何用指数平滑法预测销售额 1.可以根据预测公式进行2113计算据平滑5261次数4102不同,指数平滑法分为:一次指数平1653滑法、二次指数平滑法和三次指数平滑法等。(一)一次指数平滑法当时间数列无明显的趋势变化,可用一次指数平滑预测。其预测公式为:yt+1'=ayt+(1-a)yt' 式中,yt+1'-t+1期的预测值,即本期(t期)的平滑值St;yt-t期的实际值;yt'-t期的预测值,即上期的平滑值St-1。该公式又可以写作:yt+1'=yt'+a(yt-yt')。可见,下期预测值又是本期预测值与以a为折扣的本期实际值与预测值误差之和。(二)二次指数平滑预测二次指数平滑是对一次指数平滑的再平滑。它适用于具线性趋势的时间数列。其预测公式为:yt+m=(2+am/(1-a))yt'-(1+am/(1-a))yt=(2yt'-yt)+m(yt'-yt)a/(1-a)式中,yt=ayt-1'+(1-a)yt-1显然,二次指数平滑是一直线方程,其截距为:(2yt'-yt),斜率为:(yt'-yt)a/(1-a),自变量为预测天数。(三)三次指数平滑预测三次指数平滑预测是二次平滑基础上的再平滑。其预测公式是:yt+m=(3yt'-3yt+yt)+[(6-5a)yt'-(10-8a)yt+(4-3a)yt]*am/2(1-a)2+(yt'-2yt+yt')*a2m2/2(1-a)2式中,yt=ayt-1+(1-a)yt-1它们的基本思想都是:预测值是以前观测值的加权和,且对不同的数据。进行长期趋势分析与预测的方法有哪些,什么情景下可以适用哪些方法。未解决问题 等待您来回答 奇虎360旗下最大互动问答社区怎样用spss操作三次指数平滑法 分析-预测-创建模型,在出现的“时间序列建模器”框中的“方法”选择“指数平滑法”,再在条件中选择不同的模型,比较不同模型拟合结果的修正R^2值,值越大拟合效果就越好。如何选择合适的预测方法 市场调查与分析 填空题选择适当的预测方法,就是()。答案:根据市场现象及各种影响因素的特点来选择。预测方法概述预测,即用已知的信息去估计和推断事物未来的发展趋势或结果。预测方法主要有:(1)移动平均预测法(简单移动平均、二项移动平均、三项移动平均);(2)指数平滑预测法(简单指数平滑、二项指数平滑、三项指数平滑、温特斯指数平滑);(3)趋势外推预测法;(4)回归预测法;(5)灰色预测法;(6)移动自回归预测法(ARIMA)。以上预测方法,除了回归预测法,其余的方法考虑的自变量只有一个—时间。以前我不能理解,单纯按照时间序列排列起结果数据,进行预测将来时刻的结果,是不是考虑因素太少,因为影响事物发展变化的因素确实太多,但是随着深入的学习,我发现这样的预测是科学的。正因为影响事物发展变化的因素太多,无法一一找到并定量分析其影响,故只选择唯一变化因素,时间。这样做的依据是,事物的发展是有规律的,只要整体环境没有发生大的变化,就仍会沿着这种趋势发展下去,这是事物发展的规律性和惯性所决定7a686964616fe4b893e5b19e31333363396366,另外就是滞后性,前期的存量水平决定了后期的发展水平,如国民经济发展,。什么是指数平滑法? 指数平滑法实际上是一种2113特殊的加5261权移动平均法。指数平滑4102法主要运用于生1653产预测,也可用于中短期经济发展趋势预测。在所有的预测方法中,指数平滑法是应用最广泛的一种。简单的全期平均法是平等利用时间序列的所有过去的数据。指数平滑法在移动平均法的基础上发展起来的时间序列分析预测方法。通过计算指数平滑值,并配合一定的时间序列预测模型,对现象的未来进行预测。其原理是任意周期的指数平滑值是实际观测值和上一周期指数平滑值的加权平均值。扩展资料指数平滑法可分为第一指数平滑法、第二指数平滑法和第三指数平滑法。当时间序列没有明显的趋势变化时,可以用指数平滑法进行预测。二次指数平滑法适用于具有线性趋势的时间序列。三次指数平滑预测是一种基于二次平滑的再平滑方法。指数平滑法的特点是可以加强观测期近期观测值对预测值的影响,不同时间观测值的权重不同,从而增加近期观测值的权重,使预测值能够反映市场的实际变化很快,观察值给出的权重可以按比例缩放,因此可以采用不同的A值来改变权重的变化率。参考资料来源:-指数平滑法一次指数平滑法的公式到底应该是怎样的?? 预测值=aX(上一期的实际值)+(1-a)X(上一期的预测值)。当时间数列无明显的趋势变化,可用一次指数平滑预测。其预测公式为:yt+1'=ayt+(1-a)yt' 式中,yt+1'-t+1期的预测值,即本期(t期)的平滑值St;yt-t期的实际值;yt'-t期的预测值,即上期的平滑值St-1。该公式又可以写作:yt+1'=yt'+a(yt-yt')。可见,下期预测值又是本期预测值与以a为折扣的本期实际值与预测值误差之和。指数平滑法的计算中,关键是α的取值大小,但α的取值又容易受主观影响,因此合理确定α的取值方法十分重要,一般来说,如果数据波动较大,α值应取大一些,可以增加近期数据对预测结果的影响。如果数据波动平稳,α值应取小一些。理论界一般认为有以下方法可供选择:经验判断法。这种方法主要依赖于时间序列的发展趋势和预测者的经验做出判断。1、当时间序列呈现较稳定的水平趋势时,应选较小的α值,一般可在0.05~0.20之间取值;2、当时间序列有波动,但长期趋势变化不大时,可选稍大的α值,常在0.1~0.4之间取值;3、当时间序列波动很大,长期趋势变化幅度较大,呈现明显且迅速的上升或下降趋势时,宜选择较大的α值,如可在0.6~0.8间选值,以使预测模型灵敏度高些,能迅速跟。SPSS教程(43)-指数平滑,指数平滑是用于长期趋势分析的主要分析方法之一。指数平滑兼容了全期平均法和移动平均法的优势,不完全舍弃过去的数据,但是会根据离当期数据时间。

#指数平滑法

qrcode
访问手机版