ZKX's LAB

导向随机微分方程怎么解

2020-07-17知识15

什么是随机微分方程,求举个实际例子 微分方程中含有随机参数或随机过程(函数)或随机初始值或随机边界值的叫随机微分方程:举个简单的例子:1)my'‘+cy'+ky=f(t)f(t)-平稳随机过程的一个样本函数;求y(t);2)my'‘+cy'+ky=0 其中 N(0,1);求自由振动y(t).等等微分方程的特解怎么求 二次2113非齐次微分方程的一般解法一般式是这样5261的ay''+by'+cy=f(x)第一步:求特4102征根令ar2+br+c=0,解得r1和1653r2两个值,(这里可以是复数,例如(βi)2=-β2)第二步:通解1、若r1≠r2,则y=C1*e^(r1*x)+C2*e^(r2*x)2、若r1=r2,则y=(C1+C2x)*e^(r1*x)3、若r1,2=α±βi,则y=e^(αx)*(C1cosβx+C2sinβx)第三步:特解f(x)的形式是e^(λx)*P(x)型,(注:P(x)是关于x的多项式,且λ经常为0)则y*=x^k*Q(x)*e^(λx)(注:Q(x)是和P(x)同样形式的多项式,例如P(x)是x2+2x,则设Q(x)为ax2+bx+c,abc都是待定系数)1、若λ不是特征根 k=0 y*=Q(x)*e^(λx)2、若λ是单根 k=1 y*=x*Q(x)*e^(λx)3、若λ是二重根 k=2 y*=x2*Q(x)*e^(λx)(注:二重根就是上面解出r1=r2=λ)f(x)的形式是e^(λx)*P(x)cosβx或e^(λx)*P(x)sinβx1、若α+βi不是特征根,y*=e^λx*Q(x)(Acosβx+Bsinβx)2、若α+βi是特征根,y*=e^λx*x*Q(x)(Acosβx+Bsinβx)(注:AB都是待定系数)第四步:解特解系数把特解的y*'',y*',y*都解出来带回原方程,对照系数解出待定系数。最后结果就是y=通解+特解。通解的系数C1,C2是任意常数。拓展资料:微分《倒向随机微分方程》读后感 在自然界中,许多生态现象可以用数学模型来刻画,通过研究数学模型,可以对自然现象作出科学的解释与预测,从而对生态问题的解决提供合理的途径。在生态数学中,人类和动物《倒向随机微分方程》读后感 微分流形、代数拓扑即使学专业也先学一下泛函分析然后起码对于大部分非数学专业本科和硕士研究生的课程,不会有数学上的困难了 朋友,首先恭喜你,一个什么是倒向随机微分方程 倒向随机微分方程,即“巴赫杜(Pardoux)-彭方程”,在随机分析、随机控制和金融数学界已经获得了很高的国际知名度.从数学的角度看,世界的本质是随机的,处处充满着不确定性和倒向随机微分方程二次增长 fn怎么收敛于f 这个只能是在幂级数收敛区域内有效了。区域外就不是解了。对于本题没必要用幂级数解。一般设解等于一个无穷多个aix^i相加的和函数,i>=0,然后代入微分方程,比较每个x^i的系数,以解出各个ai,最终就得到一个已知的级数了。我不知道这题你是怎么利用幂级数解出来的,按常规,幂级数解法运用的时候涉及到未知函数时通常是一次方,如果有二次方以上的话,则涉及到无穷级数的乘方问题,这是很麻烦的。对于你举的例子,由于涉及到未知函数的3次方,所以这个问题很麻烦。(注意:本例的自变量是时间t)很多时候,幂级数解法是常规解法不好办的情况下不得已而为之的。对于本例,直接用常规解法。如下:方程两边同每乘以dx/dt,0.5(dx/dt)^2+1/4x^4=C解得dx/dt,然后用分离变量法求解,得到的解当然是振动的。倒向随机微分方程好学吗? 志者好学,网尽天下,微积蚂蚊搬树之道,何事成其也。完整学习测度论、实分析、随机微分方程需要多久时间? 有数分、线代、概率、常微的基础,会一点集合论。没有泛函、拓扑基础。对于实分析、测度,自学了年把,没…完整学习测度论、实分析、随机微分方程需要多久时间? 有数分、线代、概率、常微的基础,会一点集合论。没有泛函、拓扑基础。对于实分析、测度,自学了年把,没…《倒向随机微分方程》读后感 在自然界中,许多生态现象可以用数学模型来刻画,通过研究数学模型,可以对自然现象作出科学的解释与预测,从而对生态问题的解决提供合理的途径。在生态数学中,人类和动物

#微分方程#数学

随机阅读

qrcode
访问手机版