雅可比椭圆函数到底是什么? 通俗易懂地讲讲雅可比椭圆函数,特别针对复变函数的周期,亚纯函数等基本定义进行讲解,尽可能让一个详细地解读一下,谢谢!。请发送邮件到 jobs@zhihu.com
雅克比椭圆函数sn(u,m)中m能是负数吗?怎么算啊? 双周期的亚纯函数。它最初是从求椭圆弧长时引导出来的,所以称为椭圆函数。椭圆函数论可以说是复变函数论在19世纪发展中最光辉的成就之一。N.H.阿贝尔、C.G.J.雅可比和K.外尔斯特拉斯等人对此都有卓越的贡献。一个函数?(z),如果存在着常数T≠0(可以是复数),使对一切z均有?(z+T)=?(z)(1)则称?(z)为周期函数,T为其周期。可使周期T满足式(1)且有最小的模。如果一函数?(z)有两个周期2ω,2ω┡,且(以下恒设其>0),则称?(z)为双周期函数。一般说来,?(z)在z=z0附近的性态与在附近的性态相同,m,n为任何整数;z0+称作z0的(周期)合同点。因此,研究?(z)例如可只限于z在以0,2ω1=2ω,2ω2=2(ω+ω┡),2ω3=2ω┡为顶点的平行四边形p中变动。这个平行四边形称为?(z)的基本周期四边形或基本胞腔(见图)。只有极点的双周期解析函数?(z)就是椭圆函数。不妨假设在p的周界上没有?(z)的零点和极点,因为否则只要对复坐标z作适当平移变换便可达到目的。由刘维尔定理知,双周期解析函数?(z)如果没有奇点则必为常数2又由留数定理易证,?(z)在p 中也不可能只有一个单极点ruw且可证明,?(z)在p 中取任何值的点。
雅可比的人物生平 雅可比出生于一个富裕的犹太人家庭,其父是银行家。雅可比自幼聪明,幼年随他舅舅学习样丁文和数学。1816年11月进入波茨坦大学预科学习,1821年春毕业。当时他的希腊语、拉丁语和历史的成绩都很优异;尤其在数学方面,他掌握的知识远远超过学校所教授的内容。他还自学了L.欧拉的《无穷小分析引论》,并且试图解五次代数方程。1821年4月雅可比入柏林大学,开始两年的学习生活,他对哲学、古典文学和数学都颇有兴趣。该校的校长评价说,从一开始雅可比就显示出他是一个“全才”。像高斯一样,要不是数学强烈吸引着他,他很可能在语言上取得很高成就。雅可比最后还是决定全力投身数学。1825年,他获得柏林大学理学博士学位。之后,留校任教。1825年到1826年冬季,他主讲关于三维空间曲线和曲面的解析理论课程。年仅21岁的雅可比善于将自己的观点贯穿在教学之中,启发学习独立思考,是当时最吸引人的数学教师,他的成功引起普鲁士教育部的注意。1826年5月,雅可比到柯尼斯堡大学任教,在柯尼斯堡大学的18年间,雅可比不知疲倦地工作着,在科学研究和教学上都做出惊人的成绩。他在数学方面最主要的成就是和挪威数学家N.H.阿贝尔相互独立地奠定了椭圆函数论的基础,引入并。
最先提出椭圆函数的物理学家是谁 最先提出椭圆函数的物理学家是-雅可比 最先提出椭圆函数的物理学家是-雅可比 雅可比(Jacobi,Karl Gustav Jacbo,1804.12.10-1852.2.18)德国数学家、物理学家。。
椭圆积分怎么计算 公式如下bai:其中R是其两个参数的有理du函数,P是一个无zhi重根dao的3或4阶多项式,内而c是一个常数。在P有重容根的时候,或者是R(x,y)没有y的奇数幂时。但是,通过适当的简化公式,每个椭圆积分可以变为只涉及有理函数和三个经典形式的积分。扩展资料:椭圆是封闭式圆锥截面:由锥体与平面相交的平面曲线。椭圆与其他两种形式的圆锥截面有很多相似之处:抛物线和双曲线,两者都是开放的和无界的。圆柱体的横截面为椭圆形,除非该截面平行于圆柱体的轴线。如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx2+ny2=1(m>;0,n>;0,m≠n)。即标准方程的统一形式。椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ,y=bsinθ标准形式的椭圆在(x0,y0)点的切线就是:xx0/a2+yy0/b2=1。椭圆切线的斜率是:-b2x0/a2y0,这个可以通过复杂的代数计算得到。参考资料来源:-椭圆积分参考资料来源:-椭圆
求解微分方程,解中含有雅可比椭圆函数 你可以换个元,y^4=a*(cosp)^2,方程两边开根号 你可以换个元,y^4=a*(cosp)^2,方程两边开根号 于是方程变为a^(1/4)*1/2*(cosp)^(-1/2)*(-sinp)*(p')=a^(1/2)*sinp 从而,。
求解单摆方程,雅可比椭圆函数 关于Jacobi椭圆函数我也并不是很熟悉,王竹溪《特殊函数概论》书里面介绍了有关它的性质。另外,wiki一下词条:Jacobi elliptic functions或许对你有帮助。其实这里两边开根号之后可以直接分离变量积分的。
雅可比椭圆函数 sn的反函数复数形式怎么计算? 双周期的亚纯函数。它最初是从求椭圆弧长时引导出来的,所以称为椭圆函数。椭圆函数论可以说是复变函数论在19世纪发展中最光辉的成就之一。N.H.阿贝尔、C.G.J。.
数学上的雅可比这么用?数学上的雅可比这么用?Jacobi(1804~1851),出生于德国 Potsdam,卒于柏林.他对数学主要的贡献是在椭圆函数及椭圆积分上,并把这些理论应用在数论上而。