ZKX's LAB

是不是每个周期函数都有最小正周期 是否所有的周期函数都有最小正周期

2021-03-17知识5

哪些周期函数无最小正周期

为什么“并非每个周期函数都有最小正周期?” 并不是所有周期函数都存在最小正周期.例知,常数函数 f(x)=C(C 为常数),x∈R,当 x 为定义域内的任何值时,函数值都是 C,即对于函数 f(x)的定义域内的每一个值 x,都有 f(x+T)=C,因此 f(x)是周期函数,由于 T 可以是任意不为零的常数,而正数集合中没有最小者,所以 f(x)没有最小正周期

所有周期函数都有最小正周期吗 不是所有周期函数都2113有最小正周期5261。周期函数f(x)的周期T是与x无关的非零常数4102,存在没有最小1653正周期的函数,而这个函数就是狄利克雷函数。狄利克雷函数(是一个定义在实数范围上、值域不连续的函数。狄利克雷函数的图像以Y轴为对称轴,是一个偶函数,它处处不连续,处处极限不存在,不可黎曼积分。实数域上的狄利克雷(Dirichlet)函数表示为:(k,j为整数)也可以简单地表示分段函数的形式D(x)=0(x是无理数)或1(x是有理数)假设f(x)=0,x为无理数f(x)=1,x为有理数由有理数和无理数的运算法则可以知道,所有的有理数与有理数的和都是有理数,与无理数的和都是无理数。那么对于这个函数而言,取T为任意有理数,就都满足了,无论x是有理数还是无理数,这就意味着狄利克雷就是一个周期函数。它的最小正周期是最小的有理数,而显然是不存在最小的有理数的,因而这个函数也就没有最小正周期了。扩展资料对于函数f(x),如果存在一个不为0的正数T,使得当x取定义域中的每一个数时,f(x+T)=f(x)总成立,那么称f(x)是周期函数,T称为这个函数的周期。如果函数f(x的所有周期中存在最小值T0,称T0为周期函数f(x)的最小正周期。周期函数的性质共分以下。

所有的周期函数都有最小正周期 为什么是错的 求举例 tanx

有哪些周期函数的和没有最小正周期? 狄利克雷函数D(x):在x为无理数时=0,x为有理数时=1,无最小正周期,任何正有理数都是该函数的最小正周期,而该函数不是常函数

是不是每个周期函数都有最小正周期 采纳数:5 获赞数:311923 不是所有周期函 2113 数都 有最小 正周 期。周期函数 5261 f(x)的周期T是与x无关的非 4102 零常数,存在 没有 最小 1653 正周期的函数,而这个。

周期函数是怎样定义的?什么是函数的最小正周期 满足f(x)=f(x+T)的函数叫周期函数,其中T叫它的周期,周期函数的周期有无数个,其中若T为周期,T的任意倍数也为周期,在所有周期中数值最小的正数就是最小正周期

是不是每个周期函数都有最小正周期 是否所有的周期函数都有最小正周期

周期函数而没有最小正周期的函数是什么,为什么 最简单的例子就是f(x)=1因为f(x+1)=1,所以1是他的周期,而f(x+2)=1,故2也是他的周期,但是,他没有最小正周期.所以f(x)=2,f(x)=3,f(x)=4.都是没有最小正周期的函数

周期函数一定有最小正周期么 不一定如,f(x)=2(或任一常数函数)f(x+T)=f(x)对任意T都成立所以,任意非0实数都是其周期,没有最小正周期

#是否所有的周期函数都有最小正周期#周期函数是否有最小正周期#三角函数最小正周期和最大正周期

随机阅读

qrcode
访问手机版