ZKX's LAB

如何证明正三棱柱的高是正三棱柱内接球的直径 正三棱柱的内接球

2021-03-17知识6

如何证明正三棱柱的高是正三棱柱内接球的直径 设正三棱柱内接球的球心为点O,分别和正三棱柱的上下两个底面相切于点A和点B;连接OA、OB,则有:OA⊥上底面,OB⊥下底面,OA和OB都等于正三棱柱内接球的半径;因为,上底面∥下底面,OA⊥上底面,所以,OA⊥下底面;因为,过一点只能作一条直线垂直于已知平面,所以,直线OA和直线OB重合;即有:A、O、B 三点共线,且AB为正三棱柱的高,可得:正三棱柱的高 AB=OA+OB 等于正三棱柱内接球的直径。

如何证明正三棱柱的高是正三棱柱内接球的直径 正三棱柱的内接球

如何求正三棱柱的外接球表面积,求方法. 设正三棱柱的底面边长为a,高为h,球半径R,则底面三角形的高为(√3)a/2,于是有:R2=(h/2)2+[(2/3)(√3)a/2)]2,因此外接球的表面积=4/3*πR2可以求出.

求正三棱柱的棱切球半径及求法,最好有图. 正三棱锥内切球半径可以用等体积法,内切球圆心连接四个顶点,把内切球半径看成新三棱锥的高用四棱柱体积除以4再乘以3,再除以一面的面积

正三棱柱的内切球和外接球的体积之比 求详细解释 最好画图 在线等 正三棱柱有内切球的话2113则正三棱柱的高一定是球的直径5261,此时正4102三棱柱的侧棱长为底面边长的(根号3)/3倍;再看外1653接球令上下的等边三角形边长为a,侧棱长为h 由等边三角形的性质,容易证明三角形几何中心到三角形三顶点的距离:S=(√3)/3 现在想象用一把刀从三棱柱的中间水平切割过去,把三棱柱切成了两个相同的三棱柱 那么新出现的平面的中心到原三棱柱的距离均为√[(h^2)+4*(a^2)/3]{勾股定理} 那么这个点就是外接球心 这个共同距离就是半径由于内切球 h=(根号3)/3a 外接球的半径为根号15/3a面积比(根号15/3)^2:(根号3/3)^2=5:1

一个正三棱柱外接球与内接球的表面积比是多少?正三棱柱不一定有内切球 应该是正三棱锥 正三棱锥的外接球和内接球半径分别为R,r 则R:r=3:1(设球心为O,VO-:-三棱柱,面积比。

正三棱柱内有一个内切球,已知球的半径为R,则这个正三棱柱的底面边长 这道题是解决正三2113角形的性质问题,5261底边长为二倍的根号三。由题4102意可得截面图,1653如下图。已知是一个正三棱柱,因此截面是一个正三角形内内切一个圆。已知圆的半径为R,可以将圆心和三角形的一个顶点连接可以得到一个顶角为30°的直角三角形,因此由三角函数可得底边的一半长度为根号三倍的R,因此底边长为二倍的根号三。扩展资料本题中运用了正三角形的性质,正三角形的其他性质如下:1、等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。2、等边三角形每条边上的中线、高线和角平分线互相重合。(三线合一)3、等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或角的平分线所在的直线。4、等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)5、等边三角形内任意一点到三边的距离之和为定值。(等于其高)6、等边三角形拥有等腰三角形的一切性质。(因为等边三角形是特殊的等腰三角形)参考资料:-正三角形的性质

什么叫三棱柱内接球 如果是“三棱柱内切球”,则如前面网友所说“在一个三棱柱内放一个球体,球体刚好顶住柱内壁”如果是“三棱柱内接于球”,则是三棱柱在球体内部,且各个顶点都在球面上。所以说,你的问题不清楚。

什么叫三棱柱内接球 如果是“三棱柱内切球”,则如前面网友所说“在一个三棱柱内放一个球体,球体刚好顶住柱内壁”如果是“三棱柱内接于球”,则是三棱柱在球体内部,且各个顶点都在球面上.所以说,你的问题不清楚.

正三棱柱的内切球与外接球的球半径关系 设正三棱柱的内切球半径为r,则正三棱柱的外接球半径R=√[(r^2+(2r)^2]=(√5)r故内切球与外接球的球半径之比为1:√5

正三棱柱外接球半径怎么求,求详细 直三棱柱 正六棱柱外接的半2113径:关键5261是找到各顶点外接球的球心。4102找到了球心,直接连接球心和任1653一顶点就是半径。该球心的就是他们的中心;也是正六棱柱、正三棱柱的重心,但不是直三棱柱的重心。位置在两个底面外接圆的圆心(中心)的连线的中点。所以要先求出两个底面的外接圆的圆心,就很容易找到这两个圆心的连线的中点。底面三角形是正三角形,设棱长为a,底面三角形高为:√3/2a,球心在底面射影是底面三角形的外心(重心),设为M点,AO=2a/3*√3/2=√3a/3,球心为O点,顶点为P点,PM=√a^2-(√3a/3)^2=√6a/3,从O点作ON⊥PA,△PON∽△PAM,a^2/PO*PM,外接球半径R=PO=√6a/4.设AO=DO=R则,DM=2/3DE=2/3*2分之根号3倍的b=b/根号3AM=根号(a^2-b^2/3),OM=AM-A0=根号(a^2-b^2/3)-R由DO^2=OM^2+DM^2得,R=根号3倍的a^2÷2倍的根号(3a^2-b^2)内接球半径同样是这个三棱锥.内接球的球心也一定在这个三棱锥的高上.设高为AM,连接DM交BC于E,连接AE,然后在面ADE内做角AED的平分线交三棱锥的高AM于O,做OF垂直于AE,则0就是内接球的球心,OM=OF=rAE=根号(a^2-b^2/4)FE=ME=1/3AM=6分之根号3倍的b,AF=AE-FE=根号(a^2-b^2/4)-6分之根号3倍的bAO=。

#正三棱柱的内接球#正三棱柱的内切球

随机阅读

qrcode
访问手机版