牛顿法求解无约束最优化问题的方法 B6公式是从B2对x求导得到的pk是定义的方向,沿着负梯度方向,后面是证明这样确实是f(x)减小的方向。这些在《数值计算》这些书里都有。
用matlab求约束最优化问题 在Matlab下输入:edit,然后将下面两行百分号之间的内容,复制进去,保存%function y=zhidao_wtosc(x)y=-(1/2)*(2000-(100*x(1)+250)/(2+0.01*x(2)^2+0.01*(1-。
在MATLAB中用神经网络算法求解无约束最优化问题 程序一:GA训练BP权值的主函数 function net=GABPNET(XX,YY)%使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络%数据归一化预处理 nntwarn off XX=[1:19;2:20;3:21;4:22]';YY=[1:4];XX=premnmx(XX);YY=premnmx(YY);YY%创建网络 net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'trainlm');下面使用遗传算法对网络进行优化 P=XX;T=YY;R=size(P,1);S2=size(T,1);S1=25;隐含层节点数 S=R*S1+S1*S2+S1+S2;遗传算法编码长度 aa=ones(S,1)*[-1,1];popu=50;种群规模 save data2 XX YY%是将 xx,yy 二个变数的数值存入 data2 这个MAT-file,initPpp=initializega(popu,aa,'gabpEval');初始化种群 gen=100;遗传代数%下面调用gaot工具箱,其中目标函数定义为gabpEval[x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 1 1],'maxGenTerm',gen,.'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutation',[2 gen 3]);绘收敛曲线图 figure(1)plot(trace(:,1),1./trace(:,3),'r-');hold on plot(trace(:,1),1./trace(:,2),'b-');xlabel('Generation');ylabel('Sum-Squared Error');figure(2)plot(trace(:,1),trace(:,3),'r-');hold on plot。
如何证明无约束优化问题有最优解 利用最优性条件,即每次迭代后非基变量的检验数,如果求最大问题,:1)当所有非基变量的检验数都小于零,则原问题有唯一最优解;2)当所有非基变量的检验数都小于等于零,注意有等于零的检验数,则有无穷多个最优解;3)当任意一个大于零的非基变。