ZKX's LAB

费马原理证明球面 费马原理

2020-07-24知识9

利用费马原理证明光的反射定律及折射定律? 费马原理是几何光学中的一条重要原理,由此原理可证明光在均匀介质中传播时遵从的直线传播定律、反射和折射定律,以及傍轴条件下透镜的等光程性等。该原理说,若光线在介质中沿某一路径传播,当光线反向时,必沿同一路径逆向传播。费马原理规定了光线传播的唯一可实现的路径,不论光线正向传播还是逆向传播,必沿同一路径。因而借助于费马原理可说明光的可逆性原理的正确性。光在任意介质中从一点传播到另一点时,沿所需时间最短的路径传播。折射定律(law of refraction)或 斯涅尔定律(Snell's Law)。折射定律:光线通过两介质的界面折射时,确定入射光线与折射光线传播方向间关系的定律,几何光学基本定律之一。如图,入射光线与通过入射点的界面法线所构成的平面称为入射面,入射光线和折射光线与法线的夹角分别称为入射角和折射角,以θ1和θ2表示。折射定律为:①折射光线在入射面内。②入射角和折射角的正弦之比为一常数,用n21表示,即式中n12称为第二介质对第一介质的相对折射率。什么是费马定理 费马大定理(Fermat's last theorem)现代表述为:当n>2时,方程xn+yn=zn没有正整数解。费马大定理的提出涉及到两位相隔1400年的数学家,一位是古希腊的丢番图,一位是法国的费马。丢番图活动于公元250年左右,他以著作《算术》闻名于世,不定方程研究是他的主要成就之一。他求解了他这样表述的不定方程(《算术》第2卷第8题):将一个已知的平方数分为两个平方数。(1)现在人们常把这一表述视为求出不定方程x2+y2=z2(2)的正整数解。因而,现在一般地,对于整系数的不定方程,如果只要求整数解,就把这类方程称为丢番图方程。有时把不定方程称为丢番图方程。关于二次不定方程(1)的求解问题解决后,一个自然的想法是问未知数指数增大时会怎么样。费马提出了这一数学问题。费马生前很少发表作品,一些数学成果常写在他给朋友的信中,有的见解就写在所读的书页的空白处。他去世后,才由后人收集整理出版。1637年前后,费马在读巴歇校订注释的丢番图的《算术》第2卷第8题,即前引表述(1)时,在书的空白处写道:“另一方面,将一个立方数分成两个立方数,一个四次幂分为两个四次幂,或者一般地将一个高于二次的幂分为两个同次的幂,这是不可能的。关于。利用费马原理证明光的反射定律及折射定律 对反射定律的证明:费马定理的定义是光总是走光程极值路线,一般都是极小值。对于光从A到B点的反射来说,如果反射点为C,光线走过。请问用费马原理如何推导傍轴条件下反射球面镜的物像距成像公式 简单思路:求出每条过物和空间任意一点,并经过镜面反射的光线的光程,求其极值,可以得到实际反射光线。若将物放置于轴线上,即可求出像距,从而验证上述关系。反射定律是怎样符合费马原理的 光在介质中沿着光程为极值的路径传播,反射是按最小光程路径传播,(因为没有极大值)假设是在均匀介质中首先只有反射光线在入射光线和法线的平面内才可能按照最小光程传播,因为任何反射光线路径都不小于它在此平面内的投影.然后可以设入射光线和反射光线分别过A、B点,在反射面同侧,作C点与A点沿反射面对称,连接BC交反射面于D点,易证AD=CD,然后由于两点之间直线最短,可以知道ACB是最短光程路线,而且符合反射定律费马(Fermat)原理是地震波射线理论中的重要原理。它阐明在一般情况下波动沿一条运行时间最短的路径传播。这条路径正是垂直于波前面的路径,即射线路径。因此,费马原理从射线角度也可以说,波沿射线传播的时间最短。严格地证明费马原理需要用到变分法,这儿可以利用泊松公式作一简单地证明。假设在t1 时刻波的扰动占据着由Q面包围的某个区域W(图1-3-4),要确定在W区域外面某一点M的波前到达时t。为此利用泊松公式,将M点作为中心,以逐渐增大的r为半径作许多同心球面,r=r1,r2,…,rk,…,rn。对于小的球半径r1 来说,扰动尚未到达球面S1,故函数在S1上的平均值为零,说明该时刻在M点没有扰动。当r增大,球面也增大,其中总有一个球面Sk与扰动区W在N点首先相切,且此球面半径rk=MN。此时球面上的函数φ和的平均值不为零,因为Sk面上已经有扰动存在。说明在相应时刻于M点处首先发现扰动。由于MN是球半径,是从M点到扰动区域W的最短距离,于是对均匀介质来说,波沿这条线段传播的时间为最小。按上述定义,该线段就是射线,因为它垂直于波前面,得出结论:波沿射线传播的旅行时间和沿任何其他路径传播的时间比较起来是最小的。这就是费马的最小时间原理。这。

#费马原理#不定方程#折射定律

随机阅读

qrcode
访问手机版