sin cos 等三角函数可以写成自然对数e 的指数形式,具体怎样写 这就是欧拉公式:e^(ix)=cosx+isinxcosx=[e^(ix)+e^(-ix)]/2sinx=[e^(ix)-e^(-ix)]/(2i)也可以展开为级数形式:sinx=x-x^3/3。x^5/5。cosx=1-x^2/2。x^4/4。
欧拉公式怎么将三角函数变为指数 高等代数中使用欧拉公式将三角函数转换为指数(由泰勒级数易得):sinx=[e^32313133353236313431303231363533e59b9ee7ad9431333366306533(ix)-e^(-ix)]/(2i)cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]cosα=1/2[e^(iα)+e^(-iα)]sinα=-i/2[e^(iα)-e^(-iα)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!z^2/2!z^3/3!z^4/4!z^n/n!此时三角函数定义域已推广至整个复数集。扩展资料三角函数与欧拉定理:假设生产函数为:Q=f(L.K)(即Q为齐次生产函数),定义人均资本k=K/L方法1:根据齐次生产函数中不同类型的生产函数进行分类讨论(1)线性齐次生产函数n=1,规模报酬不变,因此有:Q/L=f(L/L,K/L)=f(1,k)=g(k)k为人均资本,Q/L为人均产量,人均产量是人均资本k的函数。让Q对L和K求偏导数,有:?Q/?L=?[L*g(k)]/?L=g(k)+L*[dg(k)/dk]*[dk/dL]=g(k)+L*g’(k)*(-K/)=g(k)-k*g’(k)?Q/?K=?[L*g(k)]/?K=L*[?g(k)/?k]=L*[dg(k)/dk]*[?k/?K]=L*g’(k)*(1/L)=g’(k)由上面两式,即可得欧拉分配定理:L*[?Q/?L]+K*[?Q/?K]=L*[g(k)-k*g’(k)]+K*g’(k)=L*g(k)-K*g’(k)+K*g’(k)=L*g(k)=Q参考资料:—欧拉定理
三角函数和指数函数运算时哪个优先? COSX2(2小写上移)=COS(X*X)COS2X(2小写上移)=COS(X)*COS(X)尤其后一种,在书中经常见到。那么你说的是前一种了。
为什么指数函数和三角函数是函数啊!?基本初等函数里的这两类函数不太懂
指数与三角函数的转化 exp(iθ)=cosθ+isinθ