ZKX's LAB

例说数学期望与方差 数学期望和方差的疑问?

2021-03-11知识16

数学期望和方差的疑问?

概率题求出数学期望后怎么求方差? 方差有两种求法第一种:根据定义求设方差=Var(X)则Var(X)=(2-37/10)^2×(3/5)+(3-37/10)^2×(3/10)+(4-37/10)^2×(1/10)第二种:用公式求方差Var(X)=E(X^2)-[E(X)]^2=[(2^2×5/3)+(3^2×3/10)+(4^2×1/10)]-(37/10)^2这两种算法的结果是一样的

数学期望和方差的关系? 方差=E(x2)-E(x)2,E(X)是数学期望。在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。。

根据数学期望方差的不同计算公式 将第一个公式中括号内的完全平方打开得到DX=E(X^2-2XEX+(EX)^2)E(X^2)-E(2XEX)+(EX)^2E(X^2)-2(EX)^2+(EX)^2E(X^2)-(EX)^2

概率论中均匀分布的数学期望和方差该怎么求啊? 均匀分布2113的期望:均匀分布的期望是取值区间[a,b]的中5261点(a+b)/2。4102均匀分布的方差:var(x)=E[X2]-(E[X])2var(x)=E[X2]-(E[X])2=1/3(a2+ab+b2)-1/4(a+b)2=1/12(a2-2ab+b2)=1/12(a-b)2若X服从[2,4]上的均1653匀分布,则数学期望EX=(2+4)/2=3;方差DX=(4-2)2/12=1/3。扩展资料1、标准均匀分布若a=0并且b=1,所得分布U(0,1)称为标准均匀分布。标准均匀分布的一个有趣的属性是,如果u1具有标准均匀分布,那么1-u1也是如此。2、相关分布(1)如果X服从标准均匀分布,则Y=Xn具有参数(1/n,1)的β分布。(2)如果X服从标准均匀分布,则Y=X也是具有参数(1,1)的β分布的特殊情况。(3)两个独立的,均匀分布的总和产生对称的三角分布。参考资料来源:-均匀分布

超几何分布的数学期望和方差的算法

数学期望和方差的关系? 方差2113=E(x2)-E(x)2,E(X)是数学期望5261。在概率论和统计学中,数学期望(mean)(或均值,亦简称期4102望)是试验中每1653次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。方差在概率论和统计学中,一个随机变量的方差描述的是它的离散程度,也就是该变量离其期望值的距离。一个实随机变量的方差也称为它的二阶矩或二阶中心动差,恰巧也是它的二阶累积量。这就是将各个误差将之平方,相加之后再除以总数,透过这样的方式来算出各个数据分布、零散的程度。扩展资料:期望值像是随机试验在同样的机会下重复多次,所有那些可能状态平均的结果,便基本上等同“期望值”所期望的数。期望值可能与每一个结果都不相等。换句话说,期望值是该变量输出值的加权平均。期望值并不一定包含于其分布值域,也并不一定等于值域平均值。赌博是期望值的一种常见应用。例如,美国的轮盘中常用的轮盘上有38个数字,每一个数字被选中的概率都是相等的。赌注一般押在其中某一个数字上,如果轮盘的输出值和这个数字相等,那么下赌者可以获得相当于赌注35倍的奖金(原注不包含在内),若输出值和下压数字不同,则赌注就输掉了。考虑到38种。

例说数学期望与方差 数学期望和方差的疑问?

常见分布的数学期望和方差

超几何分布的数学期望和方差怎么算 X H(n,M,N)例 N个球 有M个黑球 取 n个黑球则 EX=nM/NDX=nM/N*(1-M/N)*(N-n)/(N-1)其实可以和二项分布类比的.二项分布就是超几何分布的极限

#指数分布的期望和方差#数学期望与方差的例题#均匀分布的期望和方差#概率分布的期望和方差#正态分布的期望和方差

随机阅读

qrcode
访问手机版