拉格朗日插值公式的几个问题 一.线性插值(一次插值)已知函数f(x)在区间[xk,xk+1]的端点上的函数值yk=f(xk),yk+1=f(xk+1),求一个一次函数y=P1(x)使得yk=f(xk),yk+1=f(xk+1),其几何意义是已知平面上两点(xk,yk),(xk+1,yk+1),求一条直线过该已知两点.1.插值函数和插值基函数由直线的点斜式公式可知:把此式按照 yk 和yk+1 写成两项:记并称它们为一次插值基函数.该基函数的特点如下表:从而P1(x)=yk lk(x)+yk+1 lk+1(x)此形式称之为拉格朗日型插值多项式.其中,插值基函数与yk、yk+1 无关,而由插值结点xk、xk+1 所决定.一次插值多项式是插值基函数的线性组合,相应的组合系数是该点的函数值yk、yk+1.例1:已知lg10=1,lg20=1.3010,利用插值一次多项式求lg12的近似值.f(x)=lgx,f(10)=1,f(20)=1.3010,设x0=10,x1=20,y0=1,y1=1.3010则插值基函数为:于是,拉格朗日型一次插值多项式为:故:即lg12 由lg10 和lg20 两个值的线性插值得到,且具有两位有效数字(精确值lg12=1.0792).二.二次插值多项式已知函数y=f(x)在点xk-1,xk,xk+1 上的函数值yk-1=f(xk-1),yk=f(xk),yk+1=f(xk+1),求一个次数不超过二次的多项式P2(x),使其满足,P2(xk-1)=yk-1,P2(xk)=yk,P2(xk+1)=yk+1.其几何意义为:已知平面上的三个。
拉格朗日插值公式? 一.线性插值(一次插值)已知函数f(x)在区间[xk,xk+1]的端点上的函数值yk=f(xk),yk+1=f(xk+1),求一个一次函数y=P1(x)使得yk=f(xk),yk+1=f(xk+1),其几何意义是已知平面上两。
插值法公式是什么? (r-7%)/(8%-7%)=(700000-715115.6)/(693513-700000)解这个方程 求出r 就行了 这种方法是假定在很小的区间内 曲线也接近直线 按线性关系来估计r
插值法公式 以下是我的个人观点:首先你得分清楚插值和拟合这两个的区别,拟合是指你做一条曲线或直线,使得你的数据点跟这条线的“误差”最小。注意,这个要求并不要求所有的数据点在。
插值法公式是什么?
插值法公式 以下是我的个人观点:首先你得分清62616964757a686964616fe58685e5aeb931333236356566楚插值和拟合这两个的区别,拟合是指你做一条曲线或直线,使得你的数据点跟这条线的“误差”最小。注意,这个要求并不要求所有的数据点在我们的拟合曲线上。插值是指你做一条曲线或直线完全经过这些点,就是说数据点一定都要在插值曲线上。插值也有好多种:比如拉格朗日插值,分段插值,样条插值(样条插值要求你还要知道这些数据点的一阶导数)我们知道两点确定一条直线(一次多项式),三点确定一条抛物线(二次多项式),试想一下有10个点是不是可以确定一个9次多项式(9次多项式里面还有一个常数项,就是10个未知数,我们有10个数据点,刚好可以求解)(*)拉格朗日插值就是上面的这种插值。但是它就是把这些多项式系数重新表示了一下(就是不用去求上面所说的10个系数)。你求出这些系数后,只要将你想要的x的值往里一代,马上就得到你想要的函数值。但这种插值在头尾附近会出现一些不好的振荡现象(龙格现象)(*)分段插值,还是按照上面的原则,比如说,我两个点两个点地确定一条直线(比如1,2点连起来,2,3点连起来),最后所有直线的集合(这时应当是一系列的。