关于随机变量分布,分别求一个连续分布和离散型分布数学期望不存在的例子,谢谢。 当E|x|->;无穷时期望不存在,如指数分布和任一个随x增大的离散分布
数学期望与方差的关系 最低0.27元开通文库会员,查看完整内容>;原发布者:安然无恙203714第3章随机变量的数字特征学习目的与要求:本章主要讨论随机变量的数字特征,概率分布全面地描述随机变量取值的统计规律性,而数字特征则描述这种统计规律性的某些重要特征。本章总的要求是:理解期望与方差的概念,掌握期望与方差的性质与计算,会计算随机变量函数的期望;掌握两点分布、二项分布、泊松分布、均匀分布、指数分布和正态分布的期望与方差;了解协方差、相关系数的概念和性质,会求相关系数,知道矩与协方差阵的概念及求法。重点内容是:期望、方差、协方差的计算,随机变量函数的数字期望;难点内容是:随机变量函数的数学期望。3.1数学期望与方差3.2协方差、相关系数、协方差矩阵3.3条件数学期望与回归3.4特征函数及其性质3.1数学期望与方差1.随机变量的期望1)离散型随机变量的期望设离散型随机变量的分布律为,则的数学期望(简称均值或期望)为。2)连续型随机变量的期望设连续型随机变量的概率密度为,则随机变量的数学期望(或称期望或均值),记为,即。连续型随机变量函数的数学期望设为连续型随机变量,其概率密度为,又随机变量,则。3)二维随机变量函数的期望若为离散型随机变量,若。
怎么说明期望的存在性,有没有人说一下啊方法? 期望是在服务过程开始之前就存在顾客头脑中的,有现实期望,非现实期望。
概率论中为什么数学期望不一定存在? 依据期望之定义:E=Σ XP(X),譬如当随机变量X是离散型随机变量时,当随机变量的取值可达到无穷(或者随机变量可以取无穷个值),则该表达式本质上是一个级数,该级数的敛散。
301数学一跟601这些有什么区别?我考研的课程是数学301,内容是哪些方面,参考书目有哪些、? 考研的统考数学共有四种,即301数学一,302数学二,303数学三,304数学四。四种数学的考试范围及适用专业不同。601数学指的是考研自主招生题目。301数学一考试科目:高等。
连续性的随机变量的求数学期望 E(X2)怎么求? 要求EX^21132,只知道EX还不够,至少要知道x是如5261何分布的,也即它的分布函4102数或者概1653率密度函数。若X~N(1,3),则Dx=3,由DX=EX^2-(EX)^2及EX的值可以算出EX^2。若X~N(1,3),Y=3X+1,EY=E(3X+1)=3EX+1=3*1+1=4,DY=D(3X+1)=3^2*DX=9*DX=9*3=27,所以Y~N(4,27)。3X与X+X+X没有区别。Z=X+Y的密度函数也要根据X,Y的概率密度f(xy)来求,一般用作图法计算,先算出分布函数F(Z),再算密度函数f(z),也可以直接积分计算:f(z)=将f(x,z-x)对x积分,这时的难点是确定好积分上下限。如果随机变量X的所有可能取值不可以逐个列举出来,而是取数轴上某一区间内的任一点的随机变量。例如,一批电子元件的寿命、实际中常遇到的测量误差等都是连续型随机变量。扩展资料:能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。离散型随机变量与连续型随机变量也是由随机变量取值范围(或说成取值的形式)确定,变量取值只能取离散型的自然数,就是离散型随机变量。x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3分钟、5分钟7毫秒、7√2分钟,在这十五分钟的时间轴上任取一点,都可能是等车。
任何随机变量都有数学期望吗?请举例说明 并非所有随机变量都与数学期望.请看连续型随机变量数学期望的定义:设X是连续型随机变量,其密度函数为f(x),如果∫xf(x)dx绝对收敛,定义 X的数学期望为E(X)=.由此可见对于连续型随机变量使用条件限制的,因此并非任何随机变量都有数学期望.具体资料请参考《概率论与数理统计》(经管类第四版)P89
离散型分布和连续型分布函数一定存在数学期望吗? 一个离散分布的存在下
数学期望在什么情况下不存在呢? 离散型随机变量32313133353236313431303231363533e58685e5aeb931333366306464X取可列个值时,它的数学期望要求级数∑|xi|pi收敛,否则数学期望不存在;连续型随机变量若在无限区间上取值,其数学期望是一个广义积分,要求积分绝对收敛,否则数学期望不存在.例如:柯西分布的数学期望EX就不存在。数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。需要注意的是,期望值并不一定等同于常识中的“期望”—“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。大数定律规定,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。扩展资料:数学期望的应用1、经济决策假设某一超市出售的某种商品,每周的需求量X在10至30范围内等可能取值,该商品的进货量也在10至30范围内等可能取值(每周只进一次货)超市每销售一单位商品可获利500元,若供大于求,则削价处理,每处理一单位商品亏损100元。若供不应求,可从其他超市调拨,此时超市商品可获利300元。试计算进货量多少时,超市可获得最佳利润?并求出最大。