ZKX's LAB

如何克服指数平滑法的缺点 简述指数平滑法的特点

2021-03-11知识6

指数平滑法优缺点及适应范围 指数平滑预测法的2113优点:对不同时间的数据的非等权处5261理较符合实际情况4102。实用中仅需选择一个模1653型参数,即可进行预测,简便易行。具有适应性,也就是说预测模型能自动识别数据模式的变化而加以调整。指数平滑预测法的缺点:对数据的转折点缺乏鉴别能力,但这一点可通过调查预测法或专家预测法加以弥补。长期预测的效果较差,故多用于短期预测。适应范围指数平滑法进一步加强了观察期近期观察值对预测值的作用,对不同时间的观察值所赋予的权数不等,从而加大了近期观察值的权数,使预测值能够迅速反映市场实际的变化。权数之间按等比级数减少,此级数之首项为平滑常数a,公比为(1-a)。指数平滑法对于观察值所赋予的权数有伸缩性,可以取不同的a值以改变权数的变化速率。如a取小值,则权数变化较迅速,观察值的新近变化趋势较能迅速反映于指数移动平均值中。因此,运用指数平滑法,可以选择不同的a值来调节时间序列观察值的均匀程度(即趋势变化的平稳程度)。扩展资料指数平滑法的计算中,关键是α的取值大小,但α的取值又容易受主观影响,因此合理确定α的取值方法十分重要,如果数据波动较大,α值应取大一些,可以增加近期数据对预测结果的影响。。

如何克服指数平滑法的缺点 简述指数平滑法的特点

销售预测中的指数平滑法运用比较灵活,适用范围较广,但是在平滑指数的选择上具有一定的主观随意性。( ) 销售预测中的指数平滑法运用比较灵活,适用范围较广,但是在平滑指数的选择上具有一定的主观随意性。()1 本题考核指数平滑法的适用范围及其优缺点。指数平滑法运用比较灵活。

什么是平滑指数 指数平滑法(Exponential Smoothing,ES)是布朗2113(Robert G.Brown)所提出,布朗认为5261时间序列的态势4102具有稳定性或规则性,所以时间序列可被1653合理地顺势推延;他认为最近的过去态势,在某种程度上会持续到未来,所以将较大的权数放在最近的资料。St-时间t的平滑值;yt-时间t的实际值;St-1-时间t-1的平滑值;a-平滑常数,其取值范围为[0,1];由该公式可知:1.St是yt-1和 St-1的加权算数平均数,随着a取值的大小变化,决定yt-1和 St-1对St的影响程度,当a取1时,St=yt;当a取0时,St=St-1。2.St具有逐期追溯性质,可探源至St-t+1为止,包括全部数据。其过程中,平滑常数以指数形式递减,故称之为指数平滑法。指数平滑常数取值至关重要。平滑常数决定了平滑水平以及对预测值与实际结果之间差异的响应速度。平滑常数a越接近于1,远期实际值对本期平滑值的影响下降越迅速;平滑常数a越接近于 0,远期实际值对本期平滑值的影响下降越缓慢。由此,当时间数列相对平稳时,可取较小的a;当时间数列波动较大时,应取较大的a,以不忽略远期实际值的影响。生产预测中,平滑常数的值取决于产品本身和管理者对良好响应率内涵的理解。3.尽管St包含有全期数据的影响,但。

平滑指数法的特点及优缺点? 平滑指数法的特点:简单的全期平均法知是对时间数列的过去数据一个不漏地全部加以同等利用;移动平均法则不考虑较远期的数据,并在加权移动平均法中给予近期资料更大的权重;而指数平滑法则兼容了全期平均和移动平均所长,不舍道弃过去的数据,但是仅给予逐渐减弱的影响程度,即随着数据的远离,赋予逐渐收敛为零的权数。平滑指数法的优缺点:1、优点:所需数据资料少,就可以预测出来所需要的结果,指数内平滑法是在移动平均法基础上发展起来的一种时间序列分析预测法,兼容了全期平均和移动平均所长,不舍弃过去的数据,但是仅给予逐渐减弱的影响程度,即随着数据的远离,赋予逐渐收敛为零容的权数是通过计算指数平滑值,配合一定的时间序列预测模型对现象的未来进行预测。2、缺点:赋予远期较小的比重,近期较大的比重,所以只能进行短期预测。

如何用指数平滑法预测销售额? 指数平滑法是趋势预测法的一种,利用事先确定的平滑指数预测未来销售量或销售额 平滑指数的取值范围一般是0.3-0.7 公式 计划期销售预测值=(平滑指数*上期实际销售数)(1-。

移动平均法、指数平滑法和时间序列分解法,它们各自的优缺点是什么?移动平均法的基本原理,是通过移动平均消除时间序列中的不规则变动和其他变动,从而揭示出时间序列的。

指数平滑法解决了移动平均法()的缺点。A、处理水平型历史数据无效 B、需对原始数据预 参考答案:B解析:本题考查的是简单移动平均法。指数平滑法解决了移动平均法需要n个观测值和不考虑t-n前时期数据的缺点,通过某种平均方式,消除历史统计序列中的随机波动。

#如何克服指数平滑法的缺点

随机阅读

qrcode
访问手机版