ZKX's LAB

正态分布的数学期望 正态分布数学期望0

2021-03-11知识13

标准正态分布的数学期望EX= A

正态分布数学期望问题(含绝对值) x0时在0到正无穷的积分,X服从标准正态分布这是确定的,不会因为你用它干什么而变化变.所以μ和σ是不会变化的.

正态分布的数学期望 E(x^4)x^4*1/√(2π)e^(-x^2/2)dx 积分区间(-∞,+∞)2∫x^4*1/√(2π)e^(-x^2/2)dx 积分区间(0,+∞)分步积分.2x^3*1/√(2π)e^(-x^2/2)+2/√(2π)∫3x^2*e^(-x^2/2)dx2x^3*1/√(2π)e^(-x^2/2)-2/√(2π)3x*e^(-x^2/2)2/√(2π)∫3*e^(-x^2/2)dx积分区间(0,+∞)1/√(2π)∫e^(-x^2/2)dx=1/22/√(2π)∫3*e^(-x^2/2)dx=3*2*1/2=3而2x^3*1/√(2π)e^(-x^2/2)-2/√(2π)3x*e^(-x^2/2)2x^3/√(2π)e^(x^2/2)-6x/√(2π)*e^(x^2/2)利用罗必塔法则,lim2x^3/√(2π)e^(x^2/2)-6x/√(2π)*e^(x^2/2)=0所以E(x^4)=3

求正态分布的数学期望 楼主的题目还是有问题,此题应该加上 X,Y相互独立的条件.你可以先求出Z的密度再来求期望,但会比较麻烦.相信楼主手里的教材上一定有这样一道题目的在本题相同的条件下求W=max(X,Y)的期望,答案为:1/根号下\\Pi;在此基础上可以有一个简单做法解楼主的问题:由X,Y相互独立且均服从标准正态分布,可以推出:X,—Y相互独立且也是均服从标准正态分布,而min(X,Y)=—max(—X,—Y),所以Emin(X,Y)=—Emax(—X,—Y)=—1/根号下\\Pi.

正态分布的期望和方差怎么求 不用二重积分的,可以有简单的办法的.设正态分布概率密度函数是f(x)=[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]其实就是均值是u,方差是t^2,不太好打公式,你将就看一下.于是:e^[-(x-u)^2/2(t^2)]dx=(√2π)t.(*)积分区域是从负无穷到正无穷,下面出现的积分也都是这个区域,所以略去不写了.(1)求均值对(*)式两边对u求导:{e^[-(x-u)^2/2(t^2)]*[2(u-x)/2(t^2)]dx=0约去常数,再两边同乘以1/(√2π)t得:[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]*(u-x)dx=0把(u-x)拆开,再移项:x*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=u*∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx也就是x*f(x)dx=u*1=u这样就正好凑出了均值的定义式,证明了均值就是u.(2)方差过程和求均值是差不多的,我就稍微略写一点了.对(*)式两边对t求导:[(x-u)^2/t^3]*e^[-(x-u)^2/2(t^2)]dx=√2π移项:[(x-u)^2]*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=t^2也就是(x-u)^2*f(x)dx=t^2正好凑出了方差的定义式,从而结论得证.

正态分布的数学期望 正态分布数学期望0

#正态分布数学期望公式#正态分布数学期望的计算公式#正态分布的期望#正态分布的期望和方差#数学高中统计与概率期望正态分布

随机阅读

qrcode
访问手机版