拉格朗日插值法中构造一组插值基函数是什么意思?实质是什么?为什么那样构造? 基函数 就是一个函数的固定形式,也就是函数只会在这个函数的基础上变化而不会丢掉的函数。例给定n+1个控制顶点Pi(i=0~n),则Bezier曲线定义为:P(t)=∑Bi,n(t)Pi u∈[0,1]。请教关于拉格朗日插值问题 matlab 拉格朗日函数源文件如下:function f=Language(x,y,x0)求已知数据点的拉格朗日插值多项式已知数据点的x坐标向量:x已知数据点的y坐标向量:y插值的x坐标:x0求得的拉格朗日插值多项式在x0处的插值:fx0处的插值:f0syms t;if(length(x)=length(y))n=length(x);elsedisp('x和y的维数不相等!');return;end%检错f=0.0;for(i=1:n)l=y(i);for(j=1:i-1)l=l*(t-x(j))/(x(i)-x(j));end;for(j=i+1:n)l=l*(t-x(j))/(x(i)-x(j));计算拉格朗日基函数end;f=f+l;计算拉格朗日插值函数simplify(f);化简if(i=n)if(nargin=3)f=subs(f,'t',x0);计算插值点的函数值elsef=collect(f);将插值多项式展开f=vpa(f,6);将插值多项式的系数化成6位精度的小数endendend将上述文存为M文件,就在命令窗口调用就行了在命令窗口输入x1=-1:0.05:1;y1=1./(1+x1.^2);x2=-1:2/5:1;y2=1./(1+x2.^2);f2=Language(x2,y2);x3=-1:2/10:1;y3=1./(1+x3.^2);f3=Language(x3,y3);x4=-1:2/20:1;y4=1./(1+x4.^2);f4=Language(x4,y4);plot(x1,y1,x2,y2,'b',x3,y3,'r',x4,y4,'g')legend('y1-原图','y2-5次插值','y3-10次插值','y4-20次插值')xlabel('x');ylabel('y')如何利用matlab解决插值拟合中的龙格现象,插值法是一个古老而实用的方法,它是一种逼近函数的构造方法。我们在学习数值分析的过程中会学到很多插值方法,如拉格朗日插值法。拉格朗日插值法中构造一组插值基函数是什么意思?实质是什么?为什么那样构造? 基函数 就是一个函数的固定形式,也就是函数只会在这个函数的基础上变化而不会丢掉的函数。例给定n+1个控制顶点Pi(i=0~n),则Bezier曲线定义为:P(t)=∑Bi,n(t)Pi u∈[0,1]其中:Bi,n(t)称为基函数。拉格朗日插值公式指的是在节点上给出节点基函数,然后做基函数的线性组合,组合系数为节点函数值的一种插值多项式。线性插值也叫两点插值,已知函数y=f(x)在给定互异点x0,x1上的值为y0=f(x0),y1=f(x1)线性插值就是构造一个一次多项式P1(x)=ax+b使它满足条件P1(x0)=y0 P1(x1)=y1其几何解释就是一条直线,通过已知点A(x0,y0),B(x1,y1)。线性插值计算方便、应用很广,但由于它是用直线去代替曲线,因而一般要求[x0,x1]比较小,且f(x)在[x0,x1]上变化比较平稳,否则线性插值的误差可能很大。为了克服这一缺点,有时用简单的曲线去近似地代替复杂的曲线,最简单的曲线是二次曲线,用二次曲线去逼近复杂曲线的情形。简单地说,就是用一些易于计算处理的函数替代原来的函数求取差值。目的当然是求得不能精确确定的中间值,但为了减少误差、工作量及复杂性,这些函数通常都用一次曲线(直线)或二次曲线替代、组合。这样,即可获得一定的准确性,亦能在精确与便利。内容:对于函数F(x)=5/(a^2+x^2)进行拉格朗日插值,取不同的结点数n,在区间〔-5,5〕取等间距n个结点为插值结点 .把f(x)和插值多项式的曲线画在同一张图上进行比较 你用的什么软件?如果是matlab,我发消息给你.如果不是,回我看,你要用什么东西来做,我看看你能不能帮你.VC++、C语言大神们,拉格朗日插值算法的龙格现象怎么破!多谢了! 算法其实不用2113怎么学习,经典的算法要记一下,比如5261各种排序的算4102法。具体用的时候去1653网上找就行了,因为很多问题的算法我们个人要搞出来真的是很费劲,所以比较经典的算法要记下来,不用过分纠结于这个问题,拿到算法你能把他们转化为代码就行了。因为编程的技术牵扯的太多你不用都过分纠结,有些你会用就行了。
随机阅读
- 七彩阳光海鲜大酒店 海南岛有什么好玩的地方啊?
- 云南省福贡县有多少个乡镇 怒江福贡县匹河怒族乡
- 星阵 赵汉乘 传奇棋手李世石退役,如何看待他围棋生涯的成就与贡献?
- 如何从矿石中提取镭的? 镭土矿是氧化物
- 如何吃即食酵母粉 即食酵母粉如何吃
- 孩子是家庭战争的源泉 电影心灵捕手观后感
- 教师如何观察和评价幼儿的区域活动 行为安全观察的效果
- 欢乐嘻哈镇做虫要厚道读后感 欢乐嘻哈镇做虫要厚道的读后感
- 家纺磨毛的密度和支数是多少最好 高密度磨毛纯棉布料
- 超时空之轮2攻略 PS上超时空之轮2怎么样,能不能和SFC上的超时空之轮相提并论?
- smt操作员做什么的? stm贴片生产线
- 有没有谁家小孩在郑州小龙武校读书的,条件咋样 小龙武校的小女孩结果
- 我家阳台想装隐形防盗窗面积大概六至八平方米大概多钱一平方请告诉我谢谢 庄永兴元上都
- 什么是企业合并形成的商誉 计算合并中产生的商誉
- 哪里有关于本届U20世青赛的专题网站? 意大利u20赞比亚
- 天外身法的问题?? 少林三路长拳视频
- 男人的下面是不是也有好多小毛毛 男生下面的毛为啥长一圈
- 民和县可以成为海东市下辖的县级市吗?谢谢 海东民和县几个乡
- 有什物质遇水会发热 遇水凝固发热
- 郑州西郊元通森林幼儿园一个月1680贵吗?学校不知 郑州元通集团幼儿园