ZKX's LAB

费马原理怎么解释,我不是问怎么证明,而是为什么会有 费马原理推导曲面方程

2021-03-09知识7

请问用费马原理如何推导傍轴条件下反射球面镜的物像距成像公式 思路:求来出每条过物和空间任意自一点,并bai经过镜面反射的光线du的光程,求其极值zhi,可以得到实际反射dao光线。若将物放置于轴线上,即可求出像距,从而验证上述关系。可以第二步是设入射光线和反射光线分别过A、B点,在反射面同侧,作C点与A点沿反射面对称,连接BC交反射面于D点,易证AD=CD,然后由于两点之间直线最短,可以知道ACB是最短光程路线,而且符合反射定律,这样即可证明。扩展资料:费马原理是几何光学的基本定理。用微分或变分法可以从费马原理导出以下三个几何光学定律:1、光线在真空中的直线传播。2、光的反射定律-光线在界面上的反射,反射角必须等于入射角。3、光的折射定律(斯涅尔定律)。最短光时线可以有多条,例如光线从椭圆面焦点A经过反射到另一焦点B,可以有无数条路径,所有这些路径的光线传播时间都相等。参考资料来源:-费马原理

利用费马原理证明光的反射定律及折射定律 费马原理是几抄何光学中的一条重bai要原理,由此原理可证du明光在均zhi匀介质中传播时遵dao从的直线传播定律、反射和折射定律,以及傍轴条件下透镜的等光程性等。该原理说,若光线在介质中沿某一路径传播,当光线反向时,必沿同一路径逆向传播。费马原理规定了光线传播的唯一可实现的路径,不论光线正向传播还是逆向传播,必沿同一路径。因而借助于费马原理可说明光的可逆性原理的正确性。光在任意介质中从一点传播到另一点时,沿所需时间最短的路径传播。折射定律(law of refraction)或 斯涅尔定律(Snell's Law)。折射定律:光线通过两介质的界面折射时,确定入射光线与折射光线传播方向间关系的定律,几何光学基本定律之一。如图,入射光线与通过入射点的界面法线所构成的平面称为入射面,入射光线和折射光线与法线的夹角分别称为入射角和折射角,以θ1和θ2表示。折射定律为:①折射光线在入射面内。②入射角和折射角的正弦之比为一常数,用n21表示,即式中n12称为第二介质对第一介质的相对折射率。

费马原理怎么解释,我不是问怎么证明,而是为什么会有 费马原理推导曲面方程

光学费马原理的内容和推导 最通俗的解释:光线传播的路径是需时最少的路径。(比如光的折射现象,就是因为光在两种介质的运动速度不同,所以为了做到 经过折射面上下两点时间最短的效果 而分配得到了折线式的路径(类似在河流两边 两个任意点上的人以不同的速度到达同一位置所用时间最短时,位置的位置恰好就是光的折射点))推导。本人不会,抱歉

费马原理怎么解释,我不是问怎么证明,而是为什么会有 函数f(x)=sin(-x)的定义域为R,∵f(-x)=sinx=-sin(-x)=-f(x),∴函数f(x)=sin(-x)是奇函数.故

如何用费马原理证明光的反射定律 费马定理的定义是光总是走光程极值路线,一般都是极小值。对于光从A到B点的反射来说,如果反射点为C,光线走过的实际路线必然是使得ACB最短的路线,也就是入射角等于折射角。

如何用费马原理证明光的反射定律? 如何用费马原理证明光的反射定律的回答如下: 如何用费马原理证明光的反射定律的回答如下:1、方法:1)首先是假设是在均匀介质中,只有反射光线在入射光线和法线的平面内。

请问用费马原理如何推导傍轴条件下反射球面镜的物像距成像公式:(物距倒数)+(像距倒数)=-2*(曲率半径的倒数) 简单思路:求出每条过物和空间任意一点,并经过镜面反射的光线的光程,求其极值,可以得到实际反射光线.若将物放置于轴线上,即可求出像距,从而验证上述关系.

请问用费马原理如何推导傍轴条件下反射球面镜的物像距成像公式 简单思路:求出每条过物和空间任意一点,并经过镜面反射的光线的光程,求其极值,可以得到实际反射光线。若将物放置于轴线上,即可求出像距,从而验证上述关系。

#费马原理推导曲面方程

随机阅读

qrcode
访问手机版