ZKX's LAB

根据费马原理证明反射定律 如何用费马原理证明光的反射定律?

2021-03-09知识6

费马原理证明反射定律 反射定律为:①反射光线与入射光线同在入射面内。②反射角等于入射角,即θi=θr。上述反射定律只适用于各向同性介质的界面,且只解决光线的传播方向问题而不涉及反射时的。

根据费马原理证明反射定律 如何用费马原理证明光的反射定律?

利用费马原理证明光的反射定律及折射定律 费马原理是几抄何光学中的一条重bai要原理,由此原理可证du明光在均zhi匀介质中传播时遵dao从的直线传播定律、反射和折射定律,以及傍轴条件下透镜的等光程性等。该原理说,若光线在介质中沿某一路径传播,当光线反向时,必沿同一路径逆向传播。费马原理规定了光线传播的唯一可实现的路径,不论光线正向传播还是逆向传播,必沿同一路径。因而借助于费马原理可说明光的可逆性原理的正确性。光在任意介质中从一点传播到另一点时,沿所需时间最短的路径传播。折射定律(law of refraction)或 斯涅尔定律(Snell's Law)。折射定律:光线通过两介质的界面折射时,确定入射光线与折射光线传播方向间关系的定律,几何光学基本定律之一。如图,入射光线与通过入射点的界面法线所构成的平面称为入射面,入射光线和折射光线与法线的夹角分别称为入射角和折射角,以θ1和θ2表示。折射定律为:①折射光线在入射面内。②入射角和折射角的正弦之比为一常数,用n21表示,即式中n12称为第二介质对第一介质的相对折射率。

反射定律是怎样符合费马原理的 光在介质中沿着光程为极值的路径传播,反射是按最小光程路径传播,(因为没有极大值)假设是在均匀介质中首先只有反射光线在入射光线和法线的平面内才可能按照最小光程传播,因为任何反射光线路径都不小于它在此平面内的投影.然后可以设入射光线和反射光线分别过A、B点,在反射面同侧,作C点与A点沿反射面对称,连接BC交反射面于D点,易证AD=CD,然后由于两点之间直线最短,可以知道ACB是最短光程路线,而且符合反射定律

如何用费马原理证明光的反射定律

费马原理证明反射定律

利用费马原理画图发证明反射定律 光线从A经过B反射到C,作A的镜像A',ABC=A'BC,根据费马原理ABC应当最小,所以A'、B、C应当共线,所以入射角等于反射角。

利用费马原理证明光的反射定律及折射定律 对反射定律的证明:费马定理的定义是光总是走光程极值路线,一般都是极小值。对于光从A到B点的反射来说,如果反射点为C,光线走过。

如何用费马原理证明光的反射定律? 如何用费马原理证明光的反射定律的回答如下: 如何用费马原理证明光的反射定律的回答如下:1、方法:1)首先是假设是在均匀介质中,只有反射光线在入射光线和法线的平面内。

#根据费马原理证明反射定律

随机阅读

qrcode
访问手机版