ZKX's LAB

二元函数在定义域内连续 怎么求二元函数的定义域啊?

2021-03-09知识6

一切初等函数在其定义域内都是连续的,这句话为什么是错误的? 是错的,应该是bai初等函数在du其定义区间zhi内是连续的,dao定义区间是指专包含在定义域内的区间。但属是基本初等函数在其定义域内连续是正确的说法。初等函数在其定义区间内连续,而函数的定义区间与函数的定义域并不完全相同,因为函数的定义域有时是由一些离散的点及一些区间构成的,对于定义域内的这些孤立的点,根本谈不上函数的连续问题,而只能在定义域内的区间上讨论连续性。这些区间,我们称之为函数的定义区间。初等函数在其定义域内的区间(即定义区间)上是连续的。扩展资料连续函数的性质:1、在某点连续的有限个函数经有限次和、差、积、商(分母不为0)运算,结果仍是一个在该点连续的函数。2、连续单调递增(递减)函数的反函数,也连续单调递增(递减)。3、连续函数的复合函数是连续的。4、一个函数在某点连续的充要条件是它在该点左右都连续。

所有基本初等函数在其定义域内都是连续的,这句话对吗 所有基本初等函数在其定义域内都是连续的,这句话是对的。连续函数的其他性质:1、在某点连续的有限个函数经有限次和、差、积、商(分母不为0)运算,结果仍是一个在该点连续的函数。2、连续单调递增(递减)函数的反函数,也连续单调递增(递减)。3、连续函数的复合函数是连续的。4、一个函数在某点连续的充要条件是它在该点左右都连续。扩展资料:连续函数的相关定理:1、闭区间上的连续函数在该区间上一定有界。2、闭区间上的连续函数在该区间上一定能取得最大值和最小值。证明:利用确界原理:非空有上(下)界的点集必有上(下)确界。3、若f(a)=A,f(b)=B,且A≠B。则对A、B之间的任意实数C,在开区间(a,b)上至少有一点c,使f(c)=C。闭区间上的连续函数在该区间上必定取得最大值和最小值之间的一切数值。4、闭区间上的连续函数在该区间上一致连续。所谓一致连续是指,对任意ε>;0(无论其多么小),总存在正数δ,当区间I上任意两个数x1、x2满足|x1-x2|<;δ时,有|f(x1)-f(x2)|<;ε,就称f(x)在I上是一致连续的。

二元函数连续,能推出二元函数在该定义域内极限存在吗? 不一定,虽然是连续的,但是要看定义域.如果定义域是闭区间,则没有极限.

二元函数在定义域内连续 怎么求二元函数的定义域啊?

二元初等函数的定义域与定义区域有什么区别?谢谢啦. 首先,二元函数的定义区域是指满足区域条件的定义域,即,该(部分)定义域构成区域,这需要看一看区域的定义,简单说,二元函数的定义域可以是几个孤立的平面上的点,这样的定义域就不构成区域,从而也就不是定义区域,所谓区域,在概念上应该至少是成片儿的.由此也就可以理解“为什么说二元初等函数在其定义域未必连续却一定在定义区域连续了”:一个只在几个孤立的点上有定义的二元函数明显是间断的,相关的情况在一元函数的结论是:“一元初等函数在其定义域未必连续却一定在定义区间连续”,可以借助一元函数的情况来理解.

二元偏导连续且可微的函数,是否可以说它在其定义域内具有单调性? 可微和单调性没什么关系。单调性是导数不变号的结果

#二元函数在定义域内连续

随机阅读

qrcode
访问手机版