指数函数及其性质教学反思 去文库,查看完整内容>;内容来自用户:wyqbdwk111教学反思“指数函数及性质”的教学共分两个课时完成,这是第一课时。本节课主要学习了指数函数的定义,研究了指数函数的图像及相关的性质。回顾这节课,心中有很多感想,也有下面一些思考:一.反思教学中的设计1.这节课是在学生系统的学习了指数概念、函数概念,基本掌握了函数性质的基础上进行学习的,具有初步的函数知识,但是对于研究具体的初等函数的性质的基本方法和步骤还比较陌生,对于指数函数要怎么样进行较为系统的研究对学生来说是有困难的,因此这节课的每一个环节以我引导,以学生的自主探究为主来完成是符合学情的。2.设计“指数函数的图象及性质”,“y=ax的图象和y=(1/a)x的图象间的关系”.“a的大小对函数图象的影响”三个问题,让学生通过几何画板软件动手画图操作、自主探究、主动思考来达到对知识的发现和接受,改变过去机械接受和死记结论的状况,符合新课改的理念,同时也完成了这节课的主要教学任务。3.在对底数a的范围的思考及三个探究性问题后都设置了练习,能及时反馈学生对所探求到的知识的掌握程度,便于及时调整课堂教学行为。从课后看学生对这些知识的掌握应该是比较好的。4.这节课的。
指数函数的图像和性质
指数函数的图像和性质 是用换元法的,x定义域是R么?如果不是你自己算一下
指数函数的图象与性质
指数函数的图象与性质 指数函数:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量.函数的定义域是R.指数函数的性质(1)y>;0(2)图像经过(0,1)点(3)a>;1,当x>;0时,y>;1;当x
指数函数的图像和性质 指数函数的性质1、定义域:R.2、值域:(0,+∞).3、过点(0,1),即x=0时,y=1.4、当a>1时,在R上是增函数;当0时,在R上是减函数.5、函数图形都是上凹的。6、函数总是在某一个方向上无限趋向于X轴,并且永不相交。7、指数函数无界。8、指数函数是非奇非偶函数扩展资料1、求函数y=(1-6(x-2))1/2的定义域和值域解:(提示:本体为指数函数定义域和值域问题)依题意,1-6(x-2)≥0,解得:x-2≤0,即x≤2所以函数的定义域为{x|x≤2},令t=6(x-2),则0≤t≤1,所以:y=(1-t)1/2,可得:0≤y≤1所以函数的值域为{y|0≤x≤1}。2、已知(a2+2a+5)3x>;(a2+2a+5)(1-x),则x的取值范围是是什么。解:因为a2+2a+5=(a+1)2+4>;0,由指数函数单调性质可知:3x>;1-x解得x>;1/4(提示:本体为不等式与指数函数单调性综合问题)所以x的取值范围为{x|x>;1/4}。参考资料来源:-指数函数
指数函数及其性质教案 去文库,查看完整内容>;内容来自用户:qingfengxuelin2.1.2指数函数及其性质教学设计一、教学目标e5a48de588b63231313335323631343130323136353331333433646432:知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,培养学生实际应用函数的能力。过程与方法:通过观察图象,分析、归纳、总结、自主建构指数函数的性质。领会数形结合的数学思想方法,培养学生发现、分析、解决问题的能力。情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。二、教学重点、难点:教学重点:指数函数的概念、图象和性质。教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。三、教学过程:(一)创设情景问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,…一个这样的细胞分裂x次后,得到的细胞分裂的个数y与x之间,构成一个函数关系,能写出x与y之间的函数关系式吗?学生回答:y与x之间的关系式,可以表示为y=2x。问题2:一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约是原来的84%.求出这种物质的剩留量随时间(单位:年)变化的函数关系.设最初的质量为1,时间变量用x表示,。
指数函数及其性质教学反思
指数函数的图像和性质 指数函数的性质 指数函数的性质 1、定义域:R.2、值域:(0,+∞).3、过点(0,1),即x=0时,y=1.4、当a>1时,在R上是增函数;当0时,在R上是减函数.5、函数图形都是上。
指数函数的图象与性质是什么? 函数y=a^x(a>0,且a≠1)叫做指数函数。指数函数:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量.函数的定义域是R.已知函数f(x)=(t为常数).(1)当t=1时,在图中的直角坐标系内作出函数y=f(x)的大致图象,并指出该函数所具备的基本性质中的两个(只需写两个).(2)设an=f(n)(n∈N*),当t>10,且t?N*时,试判断数列{an}的单调性并由此写出该数列中最大项和最小项(可用[t]来表示不超过t的最大整数).(3)利用函数y=f(x)构造一个数列{xn},方法如下:对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述构造过程中,若xi(i∈N*)在定义域中,则构造数列的过程继续下去;若xi不在定义域中,则构造数列的过程停止.若可用上述方法构造出一个常数列{xn},求t的取值范围.