ZKX's LAB

直线椭圆的距离公式推导过程 直线与椭圆相交的弦长公式

2021-03-09知识71

高中数学:求椭圆上一点.该点到椭圆外的一条直线距离最小,除了用点到直线距离公式,还有一种方法是将直线。 方法:若已知直线方程为Ax+By+C1=0,(A,B,C1为常数)1.可设平行于已知直线且与椭圆相切的直线方程为:AX+By+C2=0,(C2为常数)2.联立椭圆方程,消去一个未知数(比如y),得到一个关于x的二次方程;3.令判断式等于0,解出C2的值,(有两个);4.代入关于x的二次方程,求出切点的横坐标,再代入直线方程AX+By+C2=0,求出纵坐标.注:两个解,一个是距离最小的点,一个是距离最大的点.5.若要求出距离,则可用两平行线间的距离公式:d=|C2-C1|/√(A2+B2)

求椭圆弦长公式的推导过程啊。 弦长=│x1-x2│√(k^2+1)=│y1-y2│√[(1/k^2)+1]其中k为直线斜率,(x1,y1),(x2,y2)为直线与曲线的两交点.证明:假设直线为:y=kx+b代入椭圆的方程可得:x^2/a^2+(kx+b)^2/b^2=1,设两交点为A、B,点A为(x1.y1),点B为(X2.Y2)则有AB=√(x1-x2)^2+(y1-y2)^把y1=kx1+b.y2=kx2+b分别代入,则有:AB=√(x1-x2)^2+(kx1-kx2)^2(x1-x2)^2+k^2(x1-x2)^2(1+k^2)*│x1-x2│同理可以证明:弦长=│y1-y2│√[(1/k^2)+1].

直线椭圆的距离公式推导过程 直线与椭圆相交的弦长公式

任意一点到椭圆的最近距离?这个公式怎么弄,我弄了半天实在没有计算出来.如果有推导出来直接贴. 这里给两个方法:(1)以该点A为圆心,参量为半径,写出圆的方程.与椭圆方程联立,所得一元二次方程的判别式为0.(2)设椭圆上与其距离最近的点为B,则过该点的椭圆的切线(容易得出)与AB相互垂直.然后从斜率之积为-1可以得出B,进而得出A到椭圆的最近距离.

请问,哪位知道两点间的距离公式推导直线与圆锥曲线相交弦长公式的过程.

椭圆的焦半径推导过程?椭圆上一点到焦点距离等于到哪一条直线的距离?过焦点与X轴垂直与椭圆相交的点坐标 焦半径的推导过程:|PF1|2=(x-c)2+y2=[a2(x-c)2+a2y2]/a2=[a2x2-2a2cx+a2c2+a2y2]/a2/*-根据b2x2+a2y2=a2b2*/[a2x2-2a2cx+a2c2+a2b2-b2x2]。

怎么求椭圆上一点到直线的距离 用点到直线距离公式 d=∣Ax+By+C∣/√(A2+B2).如果求椭圆上点到直线距离的最大(小)值,可设椭圆上的点为参数形式,即x'=aCOSθ,y=bSinθ,代入d,用三角函数方法求最值.

随机阅读

qrcode
访问手机版