抛物型偏微分方程的抛物方程 。二阶线性偏微分方程(6)在区域Q内称为是抛物型的,如果存在常数α>;0,使得对于任意ξ∈Rn,(x1,x2,…,xn,t)∈Q 有。的形式。(7)称为具有散度形式的抛物型方程,(6)称为非散度形式的抛物型方程。时,(6)与(7)是有区别的,不能互推。如果方程(6)、(7)中的系数和右端还依赖于u,墷u,则(6)和(7)称为拟线性抛物型方程。抛物型方程和椭圆型方程的研究有相似的地方,它们互相影响、互为借鉴。椭圆型方程理论很多结果在抛物型方程中都有相应的定理,例如先验估计、极值原理等。
一阶线性偏微分方程都是抛物型的吗? 抛物型应该是对二阶偏微方程的分类吧,A=0就不适合这种讨论举个例子,按你这样说,对一元二次方程ax^2+bx+c=0,a=0,b=0,c≠0,△=b^2-4ac=0,那表明方程有两个相等实根?
目前数值计算领域中有限差分法和有限元法是很常用的方法,请问这两种方法有什么区别呢?如果一个偏微分方程能能用有限差分求解,那该方程同时还能用有限元法求解吗?谢谢everease先生的指教.我想做的是一个复杂过程的模拟.这其中涉及到电磁场,流场,和温度场,但是手上的软件为CFD软件,采用的是差分法求解;我想做二次开发,采用原软件的计算模块(FDM),计算温度场(抛物型)和电磁场(椭圆型),是不是仅仅是
怎么找一个抛物线的方程? 抛物线的方程有三种形式:一般式为y=ax2+bx+c(a,b,c为常数,a≠0)顶点式为y=a(x-h)2+k(a,h,k为常数,a≠0)交点式为y=a(x-x?)(x-)(a为常数,a≠0,x?、x?分别为抛物线与x轴交点的横坐标).
用matlab求解抛物型方程,急啊!!用最简隐格式(向后差分格式)求解抛物型方程 用matlab求解抛物型方程,急啊!用最简隐格式(向后差分格式)求解抛物型方程 要用matlab求解,但是不能用里面的求微分方程的工具来求解,就是自己编程序,要有图示的啊,。
请问具体如何区分,抛物型偏微分方程,双曲型偏微分方程,椭圆型偏微分方程? 依次是椭圆型,双曲型,双曲型AUxx+BUxy+CUyy+.=0Δ=B^2-4ACΔ=0:抛物型Δ>;0:双曲型Δ
为什么抛物线方程要4种形式 开口和焦点不一样标准方程:右开口抛物线:y^2=2px 左开口抛物线:y^2=-2px 上开口抛物线:x^2=2py 下开口抛物线:x^2=-2py[p为焦准距(p>;0)]在抛物线y^2=2px中,焦点是(p/2,0),准线的方程是x.