ZKX's LAB

数学期望怎么求? X 怎么求数学期望

2020-07-23知识12

数学期望E(x)和D(X)怎么求 数学期望为设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X),Var(X)或DX.即D(X)=E{[X-E(X)]^2}称为方差,而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差(或方差).如何计算数学期望值,在概率论和统计学中,数学期望(简称期望)是试验中每次可能结果的概率乘以其结果的总和。是最基本的数学特征之一。它反映随机变量平均取值的大小。密度函数怎么求它的数学期望和方差f(x 求方差要利用个公式,DX=EX^2-(EX)^2期望zhidaoEX=∫f(x)专*x dx下面的积分区间都是-a到a 为了书写我就不写明了。EX=∫1/2a*x dx=0EX^2=∫(1/2a)*x^2 dx=1/3 a^2DX=EX^2-(EX)^2=(1/3)a^2当然,对于一些常见分布的期望和方差可以直接背公属式请别忘记,祝学习愉快数学期望E(X2)怎么求, 你看一下能不能先求一个方差D(X)再用一个公式D(X)=E(X^2)-E(X)^2 就求出E(X2)了数学期望和分布列怎么求呢? 1、只要把分布列表格2113中的数字,每一列相5261乘再相加,即可。2、如果X是离散型4102随机变1653量,它的全部可能取值是a1,a2,…,an,…,取这些值的相应概率是p1,p2,…,pn,…,则其数学期望E(X)=(a1)(p1)+(a2)(p2)+…+(an)(pn)+…;均匀分布的期望:均匀分布的期望是取值区间[a,b]的中点(a+b)/2。均匀分布的方差:var(x)=E[X2]-(E[X])2。扩展资料:用概率论的知识,不难得知,甲获胜的可能性大,乙获胜的可能性小。因为甲输掉后两局的可能性只有(1/2)×(1/2)=1/4,也就是说甲赢得后两局或后两局中任意赢一局的概率为1-(1/4)=3/4,甲有75%的期望获得100法郎;而乙期望赢得100法郎就得在后两局均击败甲,乙连续赢得后两局的概率为(1/2)*(1/2)=1/4,即乙有25%的期望获得100法郎奖金。可见,虽然不能再进行比赛,但依据上述可能性推断,甲乙双方最终胜利的客观期望分别为75%和25%,因此甲应分得奖金的100*75%75(法郎),乙应分得奖金的的100×25%25(法郎)。这个故事里出现了“期望”这个词,数学期望由此而来。参考资料来源:-分布列参考资料来源:-数学期望概率题求出数学期望后怎么求方差? 方差有两种求法第一种:根据定义求设方差=Var(X)则Var(X)=(2-37/10)^2×(3/5)+(3-37/10)^2×(3/10)+(4-37/10)^2×(1/10)第二种:用公式求方差Var(X)=E(X^2)-[E(X)]^2=[(2^2×5/3)+(3^2×3/10)+(4^2×1/10)]-(37/10)^2这两种算法的结果是一样的x平方的数学期望和x的数学期望有什么关系 D(X)=E{[X-E(X)]^2}=E(X^2)-[E(X)]^2当D(X)=E{[X-E(X)]^2}称为变量X的方差,而称为标准差百(或均方差)度。它与X有相同的量纲。标准差是用来衡量一组数据的离散程度的统计版量。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。扩展资料期望与方差的相关性质:1、权E(C)=C2、E(CX)=CE(X)3、E(X+Y)=E(X)+E(Y)4、当X和Y相互独立时,E(XY)=E(X)E(Y)5、设 X 与 Y 是两个随机变量,则其中协方差特别的,当X,Y是两个不相关的随机变量则数学期望怎么求? 求解“数学期望”主要有两种方法:只要把分布列表格中的数字 每一列相乘再相加 即可。如果X是离散型随机变量,它的全部可能取值是a1,a2,…,an,…,取这些值的相应概率是p1,p2…,pn,…,则其数学期望E(X)=(a1)*(p1)+(a2)*(p2)+…+(an)*(pn)+…;如果X是连续型随机变量,其概率密度函数是p(x),则X的数学期望E(X)等于 函数xp(x)在区间(-∞,+∞)上的积分。在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。数学期望 E(x)=(∫R^2)xf(x,y)dxdy∫R^2表示二重积分,在函数所定义的所有的域积分

#数学#数学期望#方差公式

随机阅读

qrcode
访问手机版