ZKX's LAB

一维抛物型偏微分方程图片 偏微分问题

2021-03-09知识21

急求!!! 大学数学,用matlab解决问题,题目是一维抛物型偏微分方程差分解法 显式前向欧拉法源程序:function[u,x,t]=EF_Euler(A,xf,T,it0,bx0,bxf,M,N)解方程 A u_xx=u_t,0,0初值:u(x,0)=it0(x)边界条件:u(0,t)=bx0(t),u(xf,t)=bxf(t)M:x 轴的等分段数N:t 轴的等分段数dx=xf/M;x=[0:M]*dx;dt=T/N;t=[0:N]'*dt;for i=1:M+1u(i,1)=it0(x(i));endfor j=1:N+1u([1 M+1],j)=[bx0(t(j));bxf(t(j))];endr=A*dt/dx/dx,r1=1-2*r;if(r>;0.5)disp('r>;0.5,unstability');endfor j=1:Nfor i=2:Mu(i,j+1)=r*(u(i+1,j)+u(i-1,j))+r1*u(i,j);(9.2.3)endendu=u';在MATLAB中编写脚本文件:A=0.5;方程系数it0=inline('sin(pi*x)','x');初始条件bx0=inline('0');bxf=inline('0');边界条件xf=2;M=80;T=0.1;N=100;[u1,x,t]=EF_Euler(A,xf,T,it0,bx0,bxf,M,N);figure(1),clf,mesh(u1)xlabel('x')ylabel('t')zlabel('U')title('r>;0.5')M=50;[u1,x,t]=EF_Euler(A,xf,T,it0,bx0,bxf,M,N);figure(2),clf,mesh(u1)xlabel('x')ylabel('t')zlabel('U')title('r)隐式后向欧拉法源程序:function[u,x,t]=IB_Euler(A,xf,T,it0,bx0,bxf,M,N)解方程 A1 u_xx=u_t,0,0初值:u(x,0)=it0(x)边界条件:u(0,t)=bx0(t),u(xf,t)=bxf(t)M:x 轴的。

您好 我想请问一个一维热传导的偏微分的方程差分格式 能否帮忙? Grank-Nicholson方法源程序:function[u,x,t]=Grank_Nicholson(A,xf,T,it0,bx0,bxf,M,N)解方程 A u_xx=u_t,0,0初值:u(x,0)=it0(x)边界条件:u(0,t)=bx0(t),u(xf,t)=bxf(t)M:x 轴的等分段数N:t 轴的等分段数dx=xf/M;x=[0:M]*dx;dt=T/N;t=[0:N]'*dt;for i=1:M+1u(i,1)=it0(x(i));endfor n=1:N+1u([1 M+1],n)=[bx0(t(n));bxf(t(n))];endr=A*dt/dx/dx;r1=2*(1+r);r2=2*(1-r);for i=1:M-1P(i,i)=r1;(9.2.17)Q(i,i)=r2;if i>;1P(i-1,i)=-r;P(i,i-1)=-r;(9.2.17)等式左边矩阵Q(i-1,i)=r;Q(i,i-1)=r;(9.2.17)等式右边矩阵endendfor k=2:N+1b=Q*u(2:M,k-1)+[r*(u(1,k)+u(1,k-1));zeros(M-2,1)];u(2:M,k)=linsolve(P,b);(9.2.17)endu=u';例2.1 Grank-Nicholson方法求解一维抛物性方程应用实例。求满足以下条件的热传导数值解:自变量取值:边界:解:在MATLAB中编写脚本文件:A=0.5;方程系数it0=inline('sin(pi*x)','x');初始条件bx0=inline('0');bxf=inline('0');边界条件xf=2;M=25;T=0.1;N=100;[u1,x,t]=Grank_Nicholson(A,xf,T,it0,bx0,bxf,M,N);mesh(u1)xlabel('x')ylabel('t')zlabel('U')

椭圆型偏微分方程、抛物型偏微分方程、双曲型偏微分方程分别对应什么物理意义?

偏微分方程解的存在唯一性吗? 常微分方程我们说满足李谱希斯条件,就一定有解的存在唯一。在偏微分方程中是没有类似的原理吗,又是因为…

一维抛物型偏微分方程图片 偏微分问题

偏微分问题 椭圆型偏微分方程:二维平面稳定场方程,如稳定浓度分布,稳定温度分布,静电场方程,无旋稳恒电流场方程,无旋稳恒流动方程等抛物型偏微分方程:一维输运方程,如扩散方程,热传导方程等双曲型偏微分方程:一维波动方程,如弦振动方程,杆振动方程,电报方程等它们是分别描述二维平面稳定场,一维输运,一维波动问题的方程

抛物型偏微分方程的反应扩散 形如的半线性抛物型方程组叫做反应扩散方程组。除了研究各种定解问题外,由于(8)的解常具有行波解u(v·x-сt)以及当t→时 u(x,t)趋于椭圆型方程组相应的边值问题的解(称为平衡解)这样的性质,因此以研究平衡解的稳定性为核心的各种问题就构成了半线性抛物型方程(组)的定性理论(或叫几何理论)。

#一维抛物型偏微分方程图片#抛物型偏微分方程的应用

qrcode
访问手机版