ZKX's LAB

抛物型偏微分方程的定解问题 抛物型偏微分方程 下游

2021-03-09知识7

抛物型偏微分方程的抛物方程

抛物型偏微分方程的定解问题 抛物型偏微分方程 下游

椭圆型偏微分方程、抛物型偏微分方程、双曲型偏微分方程分别对应什么物理意义? 椭圆型偏微分方程:二维平面稳定场方程,如稳定浓度分布,稳定温度分布,静电场方程,无旋稳恒电流场方程,无旋稳恒流动方程等抛物型偏微分方程:一维输运方程,如扩散方程,热传导方程等双曲型偏微分方程:一维波动方程,如弦振动方程,杆振动方程,电报方程等它们是分别描述二维平面稳定场,一维输运,一维波动问题的方程

偏微分方程的分类 二阶偏微分方程的一般形式为A*Uxx+2*B*Uxy+C*Uyy+D*Ux+E*Uy+F*U=0其特征方程为A*(dy)^2-2*B*dx*dy+C*(dx)^2=0若在某域内B^2-A*C0则在此域内称为双曲形方程其实主要是按特征方程的曲线类型分的注:Uxx表示U对x求二阶.

怎样判断微分方程的线性与非线性 对于线性微分方程,2113其中只能出现函数本身,以及5261函数的任何阶次的导函4102数;函数本1653身跟所有的导函数之间除了加减之外,不可以有任何运算;函数本身跟本身、各阶导函数本身跟本身,都不可以有任何加减之外的运算;不允许对函数本身、各阶导函数做任何形式的复合运算,例如:siny、cosy、tany、lny、lgx、y2、y3。若一个微分方程不符合上面的条件,就是非线性微分方程。扩展资料线性方程:在代数方程中,仅含未知数的一次幂的方程称为线性方程。这种方程的函数图象为一条直线,所以称为线性方程。可以理解为:即方程的最高次项是一次的,允许有0次项,但不能超过一次。比如ax+by+c=0,此处c为关于x或y的0次项。微分方程:含有自变量、未知函数和未知函数的导数的方程称为微分方程。如果一个微分方程中仅含有未知函数及其各阶导数作为整体的一次幂,则称它为线性微分方程。可以理解为此微分方程中的未知函数y是不超过一次的,且此方程中y的各阶导数也应该是不超过一次的。参考资料-线性微分方程

抛物型偏微分方程的反应扩散

抛物型偏微分方程的极值原理? 如果我想把热极值原理推广到一般的抛物型方程,有人想过?它的证明会类似乎热传导方程?

#抛物型偏微分方程 下游#抛物型偏微分方程的应用

随机阅读

qrcode
访问手机版