用费马定理证明光的折射与反射定理 哈哈‘‘你问对了‘我的专业反射定理考虑由Q发出经反射面到达P的光线.相对于反射面取P的镜像对称点P’,从Q到P任一可能路径QM’P的长度与QM’P’相等.显然,直线QMP’是其中最短的一根,从而路径QMP长度最短.根据肥马原理,QMP是光线的实际路径.折射定律考虑由Q出发经折射面折射到达P的光线.作QQ’与PP’平行,故而共面,我们称此平面为Ⅱ.考虑从Q经折射面上任一点M’到P的光线QM’P.由M’作垂足Q’、P’联线的垂线M’M,不难看出QM’,PM’,既光线QM’P在Ⅱ平面上的投影QMP比QM’P本身的光程更短.可见光程最短的路径应在Ⅱ平面内寻找.假设QQ’=h1,PP'=h2,Q’P’=P,Q'M=x,则(QMP)=n1QM+n2MP既 d(QMP)/dx=n1x/根号(h1*h1+x*+)-n2(p-x)/根号(h2*he+(p-x)*(p-x)由光程的最小条件d(MQP)/dx=0 可得 n1sini1=n2sini2
利用费马原理证明光的反射定律及折射定律 费马原理是几何光学中的一条重要原理,由此原理可证明光在均匀介质中传播时遵从的直线传播定律、反射和折射定律,以及傍轴条件下透镜的等光程性等。该原理说,若光线在介质。
利用费马原理证明光的反射定律及折射定律 对反射定律的证明:费马定理的定义是光总是走光程极值路线,一般都是极小值。对于光从A到B点的反射来说,如果反射点为C,光线走过。
从光的折射反射定律可以抽象出费马原理,有没有其他物理定律可以抽象抽变分原理的例子吗? 费马原理 光(广义地说,包括各种电磁波)沿着光程为极值的路径传播,又称极端光程律或光程最短定律。这是P.de费马于1657年首先提出的,称为费马原理。。
费马原理如何解释双折射 双折射现象解释起来比较麻烦,费马定理的定义是光总是走光程极值路线,一般都是极小值。对于双折射晶体来说,沿着光轴方向的介质性质和垂直于光轴方向的介质性质有差异,所以对于o光e光来说,折射率不同。对于,o光来说,沿着光轴走直线光程最短,但是对于e光来说,有一定夹角光程会最短。所以出现双折射现象。
怎样用时间最短原理(费马提出的)证明光的折射定律? 费马原理对折射定律的证明假设光从介质n_1入射到介质n_2.在两个介质的交界面上取一条直线?为x轴,法线为y轴,建立直角坐标系?在入射光线上任取一点A(x_1,y_1),光线与两介质交界面的交点为B(x,0),在折射.
光的折射原理,为什么传播速度的改变会影响到方向? 行波传播方向和震荡方向垂直.从一种物体进入另一种物体,场分布会发生变化,则传播方向就变化了本质并不是速度变化.