ZKX's LAB

一切初等函数在其定义域内都是连续的,这句话为什么是错误的? 在定义域内都不单调的函数

2021-03-08知识2

如何求反函数的定义域 找到一个单调区间,此区间即是烦函数的定义域。把函数看作方程:y=f(x)解方程,求出x用y标识的表达式,x=f^(-1)(y)将x,y互换即得反函数表达式:y=f^(-1)(x)例如:求 y=3x+5。

什么是单调不减(或不增)函数 自变量增大,函数值不增加的就是不增函数,有人直接叫它减函数,而把自变量增加,函数值减小的函数叫严格减函数。不强调区间的情况下,所谓的单调函数是指,对于整个定义域。

基本初等函数在定义域内都是可导的吗是基本初等函数 基本初等2113函数在定义域内不一定都是可导5261的。初等函数在定义域4102内一定连续,1653但不一定可导!举例如下:y=|x|就是y=sqrt(x^2),它是基本初等函数。y=sqrt(u)和u=x^2的复合函数,是初等函数。(其中x^2表示x的平方,sqrt(x)表示x的算术平方根)。但y=|x|在x=0点处的左导数为-1,右导数为1,因此该函数在x=0处不可导。另举反例:y=x^(1/3)(即x的立。y=sqrt(u)和u=x^2的复合函数,是初等函数。(其中x^2表示x的平方,sqrt(x)表示x的算术平方根)。但y=|x|在x=0点处的左导数为-1,右导数为1,因此该函数在x=0处不可导。另举反例:y=x^(1/3)(即x的立初等函数在定义域内一定连续,但不一定可导!举例如下:y=|x|就是y=sqrt(x^2),它是基本初等函数。y=sqrt(u)和u=x^2的复合函数,是初等函数。(其中x^2表示x的平方,sqrt(x)表示x的算术平方根)。但y=|x|在x=0点处的左导数为-1,右导数为1,因此该函数在x=0处不可导。另举反例:y=x^(1/3)(即x的立。方根是基本初等函数,但在x=0处不可导。例如:幂函数y=x^(1/2),定义域x≥0。导数y=1/2?x^(-1/2),只有当x>;0可导。又如,幂函数y=x^(2/3),定义域R,但在x=0处不可导。。

奇函数和偶函数的单调性 奇函数的图像关于原点对称,偶函数的图像关于y轴对称。额~奇函数与偶函数的单调性?这个是根据函数的不同而不同的阿~这样吧,我给你解释下,先从单调性说起吧:函数的单调。

怎样判断,函数的奇偶性,函数在一个区间内 奇偶性 1.定义 一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。(2)如果对于函数定义域内的任意一个x,都有f。

一切初等函数在其定义域内都是连续的,这句话为什么是错误的? 在定义域内都不单调的函数

基本初等函数在定义域内都是可导的吗是基本初等函数? 基本初等函数在定义域内不一定都是可导的。初等函数在定义域内一定连续,但不一定可导!举例如下:y=|x|就是y=sqrt(x^2),它是基本初等函数。y=sqrt(u)和u=x^2的复合函数,是初等函数。(其中x^2表示x的平方,sqrt(x)表示x的算术平方根)。但y=|x|在x=0点处的左导数为-1,右导数为1,因此该函数在x=0处不可导。另举反例:y=x^(1/3)(即x的立。y=sqrt(u)和u=x^2的复合函数,是初等函数。(其中x^2表示x的平方,sqrt(x)表示x的算术平方根)。但y=|x|在x=0点处的左导数为-1,右导数为1,因此该函数在x=0处不可导。另举反例:y=x^(1/3)(即x的立初等函数在定义域内一定连续,但不一定可导!举例如下:y=|x|就是y=sqrt(x^2),它是基本初等函数。y=sqrt(u)和u=x^2的复合函数,是初等函数。(其中x^2表示x的平方,sqrt(x)表示x的算术平方根)。但y=|x|在x=0点处的左导数为-1,右导数为1,因此该函数在x=0处不可导。另举反例:y=x^(1/3)(即x的立。方根是基本初等函数,但在x=0处不可导。例如:幂函数y=x^(1/2),定义域x≥0。导数y=1/2?x^(-1/2),只有当x>;0可导。又如,幂函数y=x^(2/3),定义域R,但在x=0处不可导。由于函数的可导性要用到函数的。

#在定义域内都不单调的函数

随机阅读

qrcode
访问手机版