ZKX's LAB

设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,Yn=1nni=1X2i 总体x服从参数为2的指数分布

2021-03-08知识7

设总体X服从参数为2的指数分布,X 大数定律:一组相互独立且具有有限期望与方差的随机变量X1,X2,…,Xn,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值.这里X21,X22,…,X2n满足大数定律的条件,且EX2i=DXi+(EXi)2=14+(12)2=12,因此根据大数定律有Yn=1nni=1X2i依概率收敛于1nni=1EX2i=12.

设总体x服从参数为2的指数分布,x1,x2。xn为总体X的简单随机抽样,则当。 设总体x服从参数为2的指数分布,x1,x2.xn为总体X的简单随机抽样,则当.设总体x服从参数为2的指数分布,x1,x2.xn为总体X的简单随机抽样,则当n→时,Yn=1/n∑Xi依概率收敛于?。

设总体X服从参数为2的指数分布,X1,X2,…,Xn是来自总体X的简单随机样本,则当n→∞时Yn=1nni=1X2i依

设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,Yn=1nni=1X2i 设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→时,Yn=1nni=1X2i 设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单。

设总体X服从参数为2的指数分布,x1,x2。xn为总体X的简单随机抽样,则当n→∞时,Yn=1/n∑Xi依概率收敛于? 由大数定律,必收敛于总体的期望.若你所指的参数为2的指数分布是说其密度为2*e^(-2x),x>;0的话,则收敛于1/2;若是说其密度为1/2*e^(-x/2),x>;0的话,则收敛于2.

设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,Yn=1nni=1X2i 大数定2113律:一组相互独立且具有有5261限期望与方差的随机变4102量X1,X2,…,Xn,当方差一致有界时,其1653算术平均值依概率收敛于其数学期望的算术平均值.这里X21,X22,…,X2n满足大数定律的条件,且EX2i=DXi+(EXi)2=14+(12)2=12,因此根据大数定律有Yn=1nni=1X2i依概率收敛于1nni=1EX2i=12.

设总体X服从参数为2的指数分布,X 由于X1,X2,…,Xn是来自总体X的简单随机样本,因而X1,X2,…,Xn相互独立,并可以推出X12,X22,…,Xn2也相互独立并且同分布.又因为X服从参数为2的指数分布,所以E(Xi)=12,D(Xi)=14,i=1,2,…,n.从而,E(Xi2)=D(Xi)+[E(Xi)]2=14+(12)2=12,i=1,2,…,n.由独立同分布大数定律可知,当n→时,Yn=1nni=1Xi2依概率收敛于12.故答案为12.

设总体X服从参数为2的指数分布,X1,X2,…,Xn是来自总体X的简单随机样本,则当n→∞时Yn=1nni=1X2i依 λ的矩估计值和极2113大似然估计值均5261为:1/X-(X-表示均值)。详细4102求解过程如下图:指数分1653布可以用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、中文维基新条目出现的时间间隔等等。指数分布可以看作当威布尔分布中的形状系数等于1的特殊分布,指数分布的失效率是与时间t无关的常数,所以分布函数简单。扩展资料:根据对应概率密度函数计算出似然函数F(x);对似然函数F(x)取对数以方便求解(由于对数函数是单调增函数,所以对似然函数取log后,与L(x)有相同的最大值点);根据参数,对第二步所得的函数求导,如果有多个参数,则分别求偏导;令导数等于0(此时F(x)取到最大值),求出参数,此时所得结果即为参数的最大似然估计值。因而限制了它在机械可靠性研究中的应用,所谓缺乏“记忆”,是指某种产品或零件经过一段时间t0的工作后,仍然如同新的产品一样,不影响以后的工作寿命值,或者说,经过一段时间t0的工作之后,该产品的寿命分布与原来还未工作时的寿命分布相同。显然,指数分布的这种特性,与机械零件的疲劳、磨损、腐蚀、蠕变等损伤过程的实际情况是完全矛盾的,它违背了产品损伤累积和老化这一过程。所以,指数分布不能。

设总体X服从参数为2的指数分布,x1,x2。xn为总体X的简单随机抽样,则当n→∞时,Yn=

设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,Yn=1nni=1X2i 大数定律:一组相互独立且具有有限期望与方差的随机变量X1,X2,…,Xn,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值.这里X 21,X 22,…,X 2n 。

设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,Yn=1nni=1X2i 总体x服从参数为2的指数分布

#总体x服从参数为2的指数分布

随机阅读

qrcode
访问手机版